1984, (with S. Galvan) Note di teoria dei modelli dell'aritmetica (“Notes on the theory of models of arithmetic”). I.S.U. Pubblicazioni Università Cattolica, Milano, [57 pp.]

1988a, 40 entries for the area “Logic” in the Dizionario Scientifico Tecnico Garzanti, Garzanti, Milano.[20 pp.]

1988b, (with W. Knorr) Diophantus, in Great lives from history, Salem Press, San Diego, California, pp. 632-637.

1989a, The metaphysics of the calculus: a foundational debate in the Paris Academy of Sciences, 1700-1706, in Historia Mathematica 16, pp. 224-248.

1989b, Nuovi risultati di incompletezza per l'aritmetica di Peano. Indicatori e funzioni velocemente crescenti. (“New incompleteness results for Peano arithmetic. Indicators and rapidly growing functions”). I.S.U. Pubblicazioni Università Cattolica, Milano, [35 pp.]

1990, (with E. Vailati) Detleff Clüver: an early opponent of the infinitesimal calculus, Centaurus, vol. 33, pp. 325-344.

1991a, (with E. Vailati) Torricelli’s infinitely long solid and its philosophical reception in the XVIIth century, ISIS, 82, pp. 50-70.

1991b, Generalizing classical and effective model theory in theories of operations and classes, Annals of pure and applied logic, 52, 3, pp. 249-308.

1991c, On the status of proofs by contradiction in the seventeenth century, Synthese, 88, pp. 15-41.

1992a, Aristotelian Logic and Euclidean Mathematics: Seventeenth century developments of the “Quaestio de Certitudine Mathematicarum”, Studies in History and Philosophy of Science, 23, 2, pp.241-265.

1992b, Descartes’s Géométrie and Revolutions in Mathematics, in Revolutions in Mathematics, ed. D. Gillies, Oxford University Press, pp. 83-116.

1996, (Book) Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, Oxford University Press. [272 pp.]. (Paperback 1999)

1998a, (Book), ed., From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press. [335 pp.]

1998b, Hermann Weyl: predicativity and an intuitionistic excursion, in Mancosu (1998a), pp. 65-85.

1998c, Hilbert and Bernays on Metamathematics, in Mancosu (1998a), pp. 149-88.

1998d, (with W. van Stigt), Intuitionistic Logic, in Mancosu (1998a), pp. 275-285.

1999a, Recent work in the history and philosophy of mathematics from the Renaissance to Berkeley, Metascience, 8, issue 2, pp. 102-124.

1999b, Between Vienna and Berlin: the immediate reception of Gödel’s incompleteness theorems, History and Philosophy of Logic, 20, pp. 33-45.

1999c, Between Russell and Hilbert: Behmann on the foundations of mathematics, The Bulletin of Symbolic Logic, 5, no.3, pp. 303-330.

1999d, Bolzano and Cournot on Mathematical Explanation, Revue d’Histoire des Sciences, 52, pp.429-455.

2000a, On Mathematical Explanation, Growth of Mathematical Knowledge, E. Grosholz and H. Breger eds., Kluwer, pp.103-119

2000b, Four entries (Jakob Bernoulli, Johann Bernoulli, Infinitesimals, Mathematical Infinity) for The Scientific Revolution: An Encyclopedia, W. Applebaum ed., Garland Publishing.

2001, Mathematical Explanation: problems and prospects, Topoi , 20, pp. 97-117.

2002a, On the constructivity of proofs. A debate among Behmann, Bernays, Gödel, and Kaufmann, in Reflections on the foundations of mathematics. Essays in honor of Solomon Feferman, edited by W. Sieg, R. Sommer, and C. Talcott, Association for Symbolic Logic, Lecture Notes in Logic (vol. 15), pp. 346-368.

2002b, Phenomenology and Mathematics: Weyl at a crossroads, in Die Philosophie und die Wissenschaften. Zum Werk Oskar Beckers, Hrsg. von J. Mittelstrass und A. Gethmann-Siefert, Fink-Verlag, München, pp.129-148.

2002c, (with T. Ryckman), Mathematics and Phenomenology. The correspondence between Oskar Becker and Hermann Weyl, Philosophia Mathematica, 10, pp. 130-202.

2003a, (with M. Marion), Wittgenstein’s constructivization of Euler’s proof of the infinity of primes, in The Vienna Circle and Logical Empiricism, ed. by Friedrich Stadler, Kluwer, pp. 171-188.

2003b, The Russellian influence on Hilbert and his school, Synthese, 137, pp. 59-101.

2004, (Essay Review), Gödel’s Collected Works, vols. IV and V, Notre Dame Journal of Formal Logic, 45, no.2, pp. 109-125.

2005a, (Book), co-edited with K. Jørgensen and S. Pedersen, Visualization, Explanation and Reasoning Styles in Mathematics, Springer, pp.x+300.

2005b, Visualization in logic and mathematics, in P. Mancosu, K. Jørgensen and S. Pedersen eds., Visualization, Explanation and Reasoning Styles in Mathematics, Springer, pp. 13-30

2005c, (with J. Hafner), The varieties of mathematical explanation, in P. Mancosu, K. Jørgensen and S. Pedersen eds., Visualization, Explanation and Reasoning Styles in Mathematics, Springer, pp. 215-250

2005d, Das Abenteuer der Vernunft: Oskar Becker and Dietrich Mahnke on the phenomenological foundation of the exact sciences, in Die Philosophie und die Mathematik: Oskar Becker in der mathematischen Grundlagendiskussion, ed. Volker Peckhaus, Wilhelm Fink Verlag: München 2005 (Neuzeit & Gegenwart: Philosophie in Wissenschaft und Gesellschaft), pp. 229-243

2005e, (with T. Ryckman), Geometry, Physics and Phenomenology: the correspondence between O. Becker and H. Weyl, in Die Philosophie und die Mathematik: Oskar Becker in der mathematischen Grundlagendiskussion, ed. Volker Peckhaus, Wilhelm Fink Verlag: München 2005 (Neuzeit & Gegenwart: Philosophie in Wissenschaft und Gesellschaft), pp. 153-228

2005f, Harvard 1940-41: Tarski, Carnap and Quine on a finitistic language of mathematics for science, History and Philosophy of Logic, 26, 2005, 327-357. French translation in J. Bouveresse and P. Wagner, eds., Mathématiques et experience (1918-1940). L'empirisme logique à l'épreuve, Paris, Odile Jacob, 2008, pp.55-93.

2006a, (Encyclopedia entry), Addendum to P. Bernays’ entry for “Hilbert” in Borchert, Donald, ed., Encyclopedia of Philosophy, 2nd edition. Detroit: Macmillan Reference USA.

2006b, Tarski on models and logical consequence, in J. Gray, J. Ferreiros, eds. The Architecture of Modern Mathematics, Oxford University Press, 209-237.

2006c, Acoustics and Optics in the early modern period, in L. Daston and K.Park eds., The Cambridge History of Science, vol . 3: Early Modern Science, Cambridge University Press, 596-631.

2006d, Il programma di Hilbert e i teoremi di incompletezza di Gödel, Rivista di Filosofia Neoscolastica, 98, pp. 489-531.

2007, Descartes and Mathematics, in J. Broughton and J. Carriero, eds., A Companion to Descartes, Blackwell, pp.103-123.

2008a, Answers to ‘5 questions’, In V. Hendricks, H. Leitgeb, eds., Philosophy of Mathematics. 5 Questions, Automatic Press/VIP, pp. 193-204.

2008b, Explanation in Mathematics, Stanford Encyclopedia of Philosophy

2008c, (Book), ed., The Philosophy of Mathematical Practice, Oxford University Press.

2008d, “Mathematical Explanation: Why it Matters”, in P. Mancosu, ed., The Philosophy of Mathematical Practice, Oxford University Press, pp. 134-149.

2008e, (with Johannes Hafner), “Unification and Explanation: a case study from real algebraic geometry”, in P. Mancosu, ed., The Philosophy of Mathematical Practice, Oxford University Press, pp. 151-178

2008f, “Quine and Tarski on Nominalism”, Oxford Studies in Metaphysics, vol IV, pp. 22-55.Italian translation in R. Pettoello and P. Valore, Willard van Orman Quine, Milan, Franco Angeli, 2009, pp. 31-61.

2008g, (Editorial), Transcription and editorial remarks to Quine’s 1946 lecture “Nominalism”, Oxford Studies in Metaphysics, IV, pp. 3-21. Also in: W. V. Quine, Confessions of a Confirmed Extensionalist, (Dagfinn Follesdal & Douglas Quine, editors), Harvard University Press, 2008.

2008h, Editor, Interpolations. Essays in honor of William Craig. Special issue of Synthese, 164, 3, October 2008. (Introduction by P. Mancosu; articles by Craig, Feferman, Demopoulos, M. Friedman, Väänänen, d'Agostino, Renardel de Lavalette, van Benthem)

2008i, Neurath, Tarski and Kokoszynska on the semantic conception of truth, in D. Patterson, New Essays on Tarski and Philosophy, Oxford University Press, pp. 192-224. Reprinted in J. C. Salles, ed., Empirismo e Gramática, Quarteto Editora, Salvador (Brazil), 2010, pp. 153-206.

2009a, Paolo Mancosu, Richard Zach, and Calixto Badesa, “The Development of Mathematical Logic from Russell to Tarski, 1900 - 1935”, in Leila Haaparanta (ed.), The Development of Modern Logic, Oxford University Press, New York, 2009, pp. 318 - 470

2009b, Tarski’s engagement with philosophy, in S. Lapointe et al., eds., The Golden Age of Polish Philosophy, Springer, Dordrecht, pp. 131-153.

2009c, ‘Style’ in mathematics, Stanford Encyclopedia of Philosophy.

2009d, Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable?, Review of Symbolic Logic, 2, pp. 612-646.

2010a, (Article with Andy Arana) Descartes and the cylindrical helix, Historia Mathematica, 37, 403-427.

2010b, Fixed- vs variable-domain interpretations of Tarski’s account of logical consequence, Philosophy Compass, 5, no. 9, 745-759

2010c,(book), The Adventure of Reason. Interplay between philosophy of mathematics and mathematical logic: 1900-1940, Oxford University Press

2011, Essay Review of Logicomix, The Journal of Humanistic Mathematics, 1, 137-152

2012a, (with A. Arana), On the relationship between plane and solid geometry, The Review of Symbolic Logic, 5, no.2, pp. 294-353.

2012b, O visível e o invisível: reflexões sobre a representação matemática [The visible and the invisible: considerations on mathematical representation], in A. Lassalle Casanave and F. Sautter, eds. Visualização nas Ciências Formais, College Publications, London, pp.1-32

2012c, (with A. Arana) Geometria Piana e Solida: una nota sulla purezza del metodo [Plane and solid geometry: a note on purity of methods], Notae Philosophicae Scientiae Formalis, 1, pp. 89-102.

2012d, (with Christopher Pincock). “Mathematical Explanation.” In Oxford Bibliographies in Philosophy. Ed. Duncan Pritchard. New York: Oxford University Press.

2013, (book), Inside the Zhivago Storm. The Editorial Adventures of Pasternak’s Masterpiece, Feltrinelli, Milan.

2015a, (with Andy Arana), Plane and Solid Geometry: A note on purity of methods, in G. Lolli, M. Panza and G. Venturi, eds. From Logic to Practice, Springer, Heidelberg, 2015, pp. 23-32. [English version of 2012c]

2015b, Grundlagen, Section 64: Frege’s discussion of definitions by abstraction in historical context, History and Philosophy of Logic, 36, pp. 62-89

2015c, Essay Review of W. Ewald and W. Sieg, eds. David Hilbert’s Lectures on the Foundations of Mathematics, Spinger, 2013, Philosophia Mathematica, 23, pp. 126-135.

2015d, In Good Company? On Hume’s Principle and the assignment of numbers to infinite concepts, The Review of Symbolic Logic, 8, issue 2, pp. 370-410.

2015e, (book), Smugglers, Rebels, Pirates. Itineraries in the publishing history of Doctor Zhivago, Hoover Press, Stanford.

2015f, (book), Zivago nella Tempesta. Le avventure editoriali del capolavoro di Pasternak, Feltrinelli, Milano [Italian translation of Mancosu 2013 with a new introduction for the Italian edition]

2015g, (book), Infini, Logique, Géométrie, Vrin, Paris.

2015h, (with Richard Zach), Heinrich Behmann’s 1921 lecture on the algebra of logic and the decision problem, The Bulletin of Symbolic Logic, Volume 21, Issue 2, pp. 164-187.

2015i, Preface to new edition of Imre Lakatos, Proofs and Refutations, Cambridge University Press, 2015.

2016a (book), Zhivago’s Secret Journey: from typescript to book, Hoover Press, Stanford.

2016b (with S. Givant), William Craig, In Memoriam, 5 pp., University Senate, UC Berkeley.

2016c, Algunas observaciones sobre la filosofía de la práctica matemática. Disputatio. Philosophical Research Bulletin 5:6, 131-156. [A translation into Spanish of the Introduction to Mancosu 2008c]


Forth1, (Introduction), Introductory note for Paul Bernays “On Hilbert’s thoughts on the foundations of mathematics” (1922) and “On the foundations of arithmetic”(1922), in Paul Bernays: Essays in the Philosophy of Mathematics, vols. I-II, W. Sieg et al. Eds., Open Court, Chicago, [8 pp.]

Updated on 2016-11-24 14:20:44 -0800 by Paolo Mancosu