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Abstract

This paper brings together Dana Scott’s measure-based semantics for
the propositional modal logic S4, and recent work in Dynamic Topological
Logic. In a series of recent talks, Scott showed that the language of S4 can
be interpreted in the Lebesgue measure algebra, M, or algebra of Borel
subsets of the real interval, [0, 1], modulo sets of measure zero. Conjunc-
tions, disjunctions and negations are interpreted via the Boolean structure
of the algebra, and we add an interior operator on M that interprets the
�-modality. In this paper we show how to extend this measure-based
semantics to the bimodal logic of S4C. S4C is a dynamic topological
logic that is interpreted in ‘dynamic topological systems,’ or topological
spaces together with a continuous function acting on the space. We extend
Scott’s measure based semantics to this bimodal logic by defining a class
of operators on the algebra M, which we call O-operators and which take
the place of continuous functions in the topological semantics for S4C.
The main result of the paper is that S4C is complete for the Lebesgue
measure algebra. A strengthening of this result, also proved here, is that
there is a single measure-based model in which all non-theorems of S4C
are refuted.

Keywords: Modal logic, S4, Completeness, Topological Semantics, Mea-
sure Algebra

1 Introduction

Kripke models for normal modal logics, consisting of a set of possible worlds
together with a binary accessibility relation, are, by now, widely familiar. But
long before Kripke semantics became standard, Tarski showed that the proposi-
tional modal logic S4 can be interpreted in topological spaces. In the topological
semantics for S4, a topological space is fixed, and each propositional variable,
p, is assigned an arbitrary subset of the space: the set of points where p is
true. Conjunctions, disjunctions and negations are interpreted as set-theoretic
intersections, unions and complements (thus, e.g., φ ∧ ψ is true at all points in
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the intersection of the set of points where φ is true and the set of points where
ψ is true. The �-modality of S4 is interpreted via the topological interior: �φ
is true at any point in the topological interior of the set of points at which φ is
true.

In this semantics, the logic S4 can be seen as describing topological spaces.
Indeed, with the topological semantics it became possible to ask not just whether
S4 is complete for the set of topological validities—formulas valid in every topo-
logical space—but also whether S4 is complete for any given topological space.
The culmination of Tarski’s work in this area was a very strong completeness
result. In 1944, Tarksi and McKinsey proved that S4 is complete for any dense-
in-itself metric space. One particularly important case was the real line, R,
and as the topological semantics received renewed interest in recent years, more
streamlined proofs of Tarksi’s result for this special case emerged in, e.g., [1], [3],
and [9]. The logic of the real line—and of Euclidean space, more generally—is
just S4.

The real line, however, can be investigated not just from a topological point
of view, but from a measure-theoretic point of view. Here, the probability
measure we have in mind is the usual Lebesgue measure on the reals. In the
last several years Dana Scott introduced a new probabilistic or measure-based
semantics for S4 that is built around Lebesgue measure on the reals and is in
some ways closely related to Tarski’s older topological semantics.

Scott’s semantics is essentially algebraic: formulas are interpreted in the
Lebesgue measure algebra, or the σ-algebra of Borel subsets of the real interval
[0,1], modulo sets of measure zero (henceforth, “null sets”). Let us denote this
algebra by M. Thus elements of M are equivalence classes of Borel sets. In
Scott’s semantics, each propositional variable is assigned to some element of
M. We say the value of the propositional variable p is that element of the
algebra to which p is assigned. Conjunctions, disjunctions and negations are
assigned to meets, joins and complements in the algebra, respectively. In order
to interpret the S4 �-modality, we add to the algebra an “interior” operator
(defined below), which we construct from the collection of open elements in the
algebra, or elements that have an open representative. Unlike in the Kripke
or topological semantics, there is no notion here of truth at a point (or at a
“world”). In [5] and [8] it was shown that S4 is complete for the Lebesgue
measure algebra.

The introduction of a measure-based semantics for S4 raises a host of ques-
tions that are, at this point, entirely unexplored. Among them: What about
natural extensions of S4? Can we give a measure-based semantics not just for S4
but for some of its extensions that have well-known topological interpretations?

This paper focuses on a family of logics called dynamic topological logics.
These logics were investigated over the last fifteen years, in an attempt to de-
scribe “dynamic topological systems” by means of modal logic. A dynamic
topological system is a pair 〈X, f〉, where X is a topological space and f is a
continuous function on X. We can think of f as moving points in X in discrete
units of time. Thus in the first moment, x is mapped to f(x), then to f(f(x)),
etc. The most basic dynamic topological logic is S4C. In addition to the S4
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�-modality, it has a temporal modality, which we denote by ©. Intuitively, we
understand the formula©p as saying that at the “next moment in time,” p will
be true. Thus we put: x ∈ V (©p) iff f(x) ∈ V (p). In [7] and [13] it was shown
that S4C is incomplete for the real line, R. However, in [14] it was shown that
S4C is complete for Euclidean spaces of arbitrarily large finite dimension, and
in [4] it was shown that S4C is complete for R2.

The aim of this paper is to give a measure-based semantics for the logic S4C,
along the lines of Scott’s semantics for S4. Again, formulas will be assigned
to some element of the Lebesgue measure algebra, M. But what about the
dynamical aspect—i.e., the interpretation of the ©-modality? We show that
there is a very natural way of interpreting the ©-modality via operators on
the algebra M that take the place of continuous functions in the topological
semantics. These operators can be viewed as transforming the algebra in discrete
units of time. Thus one element is sent to another in the first instance, then to
another in the second instance, and so on. The operators we use to interpret
S4C are O-operators: ones that take “open” elements in the algebra to open
elements (defined below). But there are obvious extensions of this idea: for
example, to interpret the logic of homeomorphisms on topological spaces, one
need only look at automorphisms of the algebra M.

Adopting a measure-based semantics for S4C brings with it certain advan-
tages. Not only do we reap the probabilistic features that come with Scott’s
semtantics for S4, but the curious dimensional asymmetry that appears in the
topological semantics (where S4C is incomplete for R but complete for R2) dis-
appears in the measure-based semantics. Our main result is that the logic S4C
is complete for the Lebesgue-measure algebra. A strengthening of this result,
also proved here, is that S4C is complete for a single model of the Lebesgue
measure algebra. Due to well-known results by Oxtoby, this algebra is isomor-
phic to the algebra generated by Euclidean space of arbitrary dimension. In
other words, S4C is complete for the reduced measure algebra generated by
any Euclidean space.

2 Topological Semantics for S4C

Let the language L�,© consist of a countable set, PV = {pn |n ∈ N}, of propo-
sitional variables, and be closed under the binary connectives ∧,∨,→,↔, unary
operators, ¬,�, �, and a unary modal operator © (thus, L�,© is the language
of propositional S4 enriched with a new modality, ©).

Definition 2.1. A dynamic topological space is a pair 〈X, f〉, where X
is a topological space and f : X → X is a continuous function on X. A
dynamic topological model is a triple, 〈X, f, V 〉, where X is a topological
space, f : X → X is a continuous function, and V : PV → P(X) is a valuation
assigning to each propositional variable a subset of X. We say that 〈X, f, V 〉 is
a model over X.

We extend V to the set of all formulas in L�,© by means of the following
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recursive clauses:

V (φ ∨ ψ) = V (φ) ∪ V (ψ)
V (¬φ) = X − V (φ)
V (�φ) = Int (V (φ))
V (©φ) = f−1(V (φ))

where ‘Int’ denotes the topological interior.
Let N = 〈X, f, V 〉 be a dynamic topological model. We say that a formula

φ is satisfied at a point x ∈ X if x ∈ V (φ), and we write N, x |= φ. We say φ is
true in N (N |= φ) if N, x |= φ for each x ∈ X. We say φ is valid in X (|=X φ),
if for any model N over X, we have N |= φ. Finally, we say φ is topologically
valid if it is valid in every topological space.

Definition 2.2. The logic S4C in the language L�,© is given by the following
axioms:

– the classical tautologies,

– S4 axioms for �.

(A1) ©(φ ∨ ψ)↔ (©φ ∨©ψ),

(A2) (©¬φ)↔ (¬© φ),

(A3) ©�φ→ �© φ (the axiom of continuity)

and the rules of modus ponens and necessitation for both � and ©. Following
[7], we use S4C both for this axiomatization and for the set of all formulas
derivable from the axioms by the inference rules.

We close this section by listing the known completeness results for S4C in
the topological semantics.

Theorem 2.3. (Completeness) For any formula φ ∈ L�,©, the following are
equivalent:
(i) S4C ` φ;
(ii) φ is topologically valid;
(iii) φ is true in any finite topological space;
(iv) φ is valid in Rn for n ≥ 2.

Proof. The equivalence of (i)-(iii) was proved by Artemov in [2]. The equiva-
lence of (i) and (iv) was proved by Duque in [4]. This was a strengthening of a
result proved by Slavnov in [14].

Theorem 2.4. (Incompleteness for R) There exists φ ∈ L�,© such that φ is
valid in R, but φ is not topologically valid.

Proof. See [7] and [13].
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3 Kripke Semantics for S4C

In this section we show that the logic S4C can also be interpreted in the more
familiar setting of Kripke frames. It is well known that the logic S4 (which does
not include the ‘temporal’ modality, ©) is interpreted in transitive, reflexive
Kripke frames, and that such frames just are topological spaces of a certain kind.
It follows that the Kripke semantics for S4 is just a special case of the topological
semantics for S4. In this section, we show that the logic S4C can be interpreted
in transitive, reflexive Kripke frames with some additional ‘dynamic’ structure,
and, again, that Kripke semantics for S4C is a special case of the more general
topological semantics for S4C. Henceforth, we assume that Kripke frames are
both transitive and reflexive.

Definition 3.1. A dynamic Kripke frame is a triple 〈W,R,G〉 where W is
a set, R is a reflexive, transitive relation on W , and G : W →W is a function
that is R-monotone in the following sense: for any u, v ∈ W , if uRv, then
G(u)RG(v).

Definition 3.2. A dynamic Kripke model is a pair 〈F, V 〉 where F =
〈W,R,G〉 is a dynamic Kripke frame and V : PV → P(W ) is a valuation
assigning to each propositional variable an arbitrary subset of W . We extend V
to the set of all formulas in L�,© by the following recursive clauses:

V (φ ∨ ψ) = V (φ) ∪ V (ψ)
V (¬φ) = W − V (φ)
V (©φ) = G−1(V (φ)).
V (�φ) = {w ∈W | v ∈ V (φ) for all v ∈W such that wRv}

Given a dynamic Kripke frame K = 〈W,R,G〉, we can impose a topology
on W via the accessibility relation R. We define the open subsets of W as those
subsets that are upward closed under R:

(*) O ⊆W is open iff x ∈ O and xRy implies y ∈ O

Recall that an Alexandroff topology is a topological space in which arbitrary
intersections of open sets are open. The reader can verify that the collection of
open subsets of W includes the entire space, the empty set, and is closed under
arbitrary intersections and unions. Hence, viewing 〈W,R〉 as a topological space,
the space is Alexandroff.

Going in the other direction, if X is an Alexandroff topology, we can define
a relation R on X by:

(@) xRy iff x is a point of closure of {y}

(Equivalently, y belongs to every open set containing x.) Clearly R is reflex-
ive. To see that R is transitive, suppose that xRy and yRz. Let O be an open
set containing x. Then since x is a point of closure for {y}, y ∈ O. But since y is
a point of closure for {z}, z ∈ O. So x is a point of closure for {z} and xRz. So
far, we have shown that static Kripke frames, 〈W,R〉 correspond to Alexandroff
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topologies. But what about the dynamical aspect? Here we invite the reader to
verify that R-monotonicity of the function G is equivalent to continuity of G in
the topological setting. It follows that dynamic Kripke frames are just dynamic
Alexandroff topologies.

In view of the fact that every finite topology is Alexandroff (if X is finite,
then there are only finitely many open subsets of X), we have shown that finite
topologies are just finite Kripke frames. This result, together with Theorem 2.3
(iii), gives the following completeness theorem for Kripke semantics:

Lemma 3.3. For any formula φ ∈ L�,©, the following are equivalent:
(i) S4C ` φ;
(ii) φ is true in any finite Kripke frame (= finite topological space).

In what follows, it will be useful to consider not just arbitrary finite Kripke
frames, but frames that carry some additional structure. The notion we are
after is that of a stratified dynamic Kripke frame, introduced by Slavnov in [14].
We recall his definitions below.

Definition 3.4. Let K = 〈W,R,G〉 be a dynamic Kripke frame. A cone in K
is any set Uv = {w ∈ W | vRw} for some v ∈ W . We say that v is a root of
Uv.

Note in particular that any cone, Uv, in K is an open subset of W—indeed,
the smallest open subset containing v.

Definition 3.5. Let K = 〈U,R,G〉 be a finite dynamic Kripke frame. We say
that K is stratified if there is a sequence 〈U1, . . . , Un〉 of pairwise disjoint cones
in K with roots u1, . . . , un respectively, such that U =

⋃
k Uk; G(uk) = uk+1 for

k < n, and G is injective. We say the stratified Kripke frame has depth n and
(with slight abuse of notation) we call u1 the root of the stratified frame.

Note that it follows from R-monotonicity of G that G(Uk) ⊆ Uk+1, for k < n.

Definition 3.6. Define the function CD (“circle depth”) on the set of all for-
mulas in L�,© inductively, as follows.

CD(p) = 0 for any propositional variable p;
CD(φ ∨ ψ) = max {CD(φ), CD(ψ)};
CD(¬φ) = CD(φ);
CD(�φ) = CD(φ);
CD(©φ) = 1 + CD(φ).

We also refer to CD(φ) as the ©-depth of φ.

Lemma 3.7. Suppose the formula φ is not a theorem of S4C, and CD(φ) = n.
Then there is a stratified finite dynamic Kripke frame K with depth n+ 1 such
that φ is refuted at the root of K.

Proof. The proof is by Lemma 3.3 and by a method of ‘disjointizing’ finite
Kripke frames. For the details, see [14].
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4 Algebraic Semantics for S4C

We saw that the topological semantics for S4C is a generalization of the Kripke
semantics. Can we generalize further? Just as classical propositional logic is
interpreted in Boolean algebras, we would like to interpret modal logics alge-
braically. Tarski and McKinsey showed that this can be done for the logic S4,
interpreting the �-modality as an interior operator on a Boolean algebra. In
this section we show that the same can be done for the logic S4C, interpreting
the ©-modality via O-operators on a Boolean algebra.

We will denote the top and bottom elements of a Boolean algebra by 1 and
0, respectively.

Definition 4.1. A topological Boolean algebra is a Boolean algebra, A,
together with an interior operator I on A that satisfies:

(I1) I1 = 1;
(I2) Ia ≤ a;
(I3) IIa = Ia;
(I4) I(a ∧ b) = Ia ∧ Ib.

Example 4.2. The set of all subsets P(X) of a topological space X with set-
theoretic meets, joins and complements and where the operator I is just the topo-
logical interior operator (for A ⊆ X, I(A) = Int(A)) is a topological Boolean
algebra. More generally, any collection of subsets of X that is closed under fi-
nite intersections, unions, complements and topological interiors is a topological
Boolean algebra. We call any such algebra a topological field of sets.

Suppose A is a topological Boolean algebra with interior operator I. We
define the open elements in A as those elements for which

Ia = a (1)

Definition 4.3. Let A1 and A2 be topological Boolean algebras. We say h :
A1 → A2 is a Boolean homomorphism if h preserves Boolean operations.
We say h is a Boolean embedding if h is an injective Boolean homomor-
phism. We say h is a homomorphism if h preserves Boolean operations and
the interior operator. We say h is an embedding if h is an injective homo-
morphism. Finally, we say A1 and A2 are isomorphic if there is an embedding
from A1 onto A2.

Definition 4.4. Let A1 and A2 be topological Boolean algebras, and let h :
A1 → A2. We say h is an O-map if

(i) h is a Boolean homomorphism

(ii) For any c open in A1, h(c) is open in A2.

An O-operator is an O-map from a topological Boolean algebra to itself.
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Lemma 4.5. Let A1 and A2 be topological Boolean algebras, with interior op-
erators I1 and I2 respectively. Suppose that h : A1 → A2 is a Boolean homo-
morphism. Then h is an O-map iff for every a ∈ A1,

h(I1a) ≤ I2(h(a)) (2)

Proof. We let G1 and G2 denote the collection of open elements in A1 and A2

respectively. (⇒) Suppose h is an O-map. Then h(I1a) ∈ G2 by Definition 4.4
(ii). Also, I1a ≤ a, so h(I1a) ≤ h(a) (h is a Boolean homomorphism, hence
preserves order). Taking interiors on both sides, we have h(I1a) = I2(h(I1a)) ≤
I2(ha). (⇐) Suppose that for every a ∈ A1, h(I1a) ≤ I2(h(a)). Let c ∈ G1.
Then c = I1c, so h(c) = h(I1c) ≤ I2(h(c)). But also, I2(h(c)) ≤ h(c). So
h(c) = I2(h(c)) and h(c) ∈ G2.

We are now in a position to state the algebraic semantics for the language
L�,©.

Definition 4.6. A dynamic algebra is a pair 〈A, h〉, where A is a topological
Boolean algebra and h is an O-operator on A. A dynamic algebraic model is
an ordered triple, 〈A, h, V 〉, where A is a topological Boolean algebra, h is an O-
operator on A, and V : PV → A is a valuation, assigning to each propositional
variable p ∈ PV an element of A. We say 〈A, h, V 〉 is a model over A. We can
extend V to the set of all formulas in L�,© by the following recursive clauses:

V (φ ∨ ψ) = V (φ) ∨ V (ψ)

V (¬φ) = −V (φ)

V (�φ) = IV (φ)

V (©φ) = hV (φ)

(The remaining binary connectives, → and ↔, and unary operator, 3, are de-
fined in terms of the above in the usual way.)

We define standard validity relations. Let N = 〈A, h, V 〉 be a dynamic
algebraic model. We say φ is true in N (N |= φ) iff V (φ) = 1. Otherwise,
we say φ is refuted in N . We say φ is valid in A ( |=A φ) if for any algebraic
model N over A, N |= φ. Finally, we let DMLA = {φ | |=A φ} (i.e., the set
of validities in A). In our terminology, soundness of S4C for A is the claim:
S4C ⊆ DMLA. Completeness of S4C for A is the claim: DMLA ⊆ S4C.

Proposition 4.7. (Soundness) Let A be a topological Boolean algebra. Then
S4C ⊆ DMLA.

Proof. We have to show that the S4C axioms are valid in A and that the rules
of inference preserve truth. To see that (A1) is valid, note that:

V (©(φ ∨ ψ)) = h(V (φ) ∨ V (ψ))

= h(V (φ)) ∨ h(V (ψ)) (h a Boolean homomorphism)

= V (©φ ∨©ψ)
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Thus V (©(φ∨ψ)↔ (©φ∨©ψ)) = 1. Validity of (A2) is proved similarly. For
(A3), note that:

V (©�φ) = h(IV (φ))

≤ Ih(V (φ)) (by Lemma 4.5)

= V (�© φ)

So V (©�φ) ≤ V (�© φ) and V (©�φ → �© φ) = 1. This takes care of the
special ©-modality axioms. The remaining axioms are valid by soundness of
S4 for any topological Boolean algebra—see e.g., [11]. To see that necessitation
for © preserves validity, suppose that φ is valid in A (i.e., for every algebraic
model N = 〈A, h, V 〉, we have V (φ) = 1). Then V (©φ) = h(V (φ)) = h(1) = 1,
and ©φ is valid in A.

5 Reduced Measure Algebras

We would like to interpret S4C not just in arbitrary topological Boolean al-
gebras, but in algebras carrying a probability measure—or ‘measure algebras.’
In this section we show how to construct such algebras from separable metric
spaces together with a σ-finite Borel measure (defined below).

Definition 5.1. Let A be a Boolean σ-algebra, and let µ be a non-negative
function on A. We say µ is a measure on A if for any countable collection
{an} of disjoint elements in A, µ(

∨
n an) =

∑
n µ(an).

If µ is a measure on A, we say µ is positive if 0 is the only element at which
µ takes the value 0. We say µ is σ-finite if 1 is the countable join of elements
in A with finite measure.1 Finally, we say µ is normalized if µ(1) = 1.

Definition 5.2. A measure algebra is a Boolean σ-algebra A together with
a positive, σ-finite measure µ on A.

Lemma 5.3. Let A be a Boolean σ-algebra and let µ be a σ-finite measure on
A. Then there is a normalized measure ν on A such that for all a ∈ A, µ(a) = 0
iff ν(a) = 0.

Proof. Since µ is σ-finite, there exists a countable collection {sn |n ≥ 1} ⊆ A
such that

∨
n≥1 sn = 1 and µ(sn) < ∞ for each n ≥ 1. WLOG we can assume

the sn’s are pairwise disjoint (i.e., sn ∧ sm = 0 for m 6= n). For any a ∈ A, let

ν(a) =
∑
n≥1

2−n
µ(a ∧ sn)

µ(sn)

The reader can verify that ν has the desired properties.

1I.e., there is a countable collection of elements An in A such that
∨
n An = 1 and µ(An) <

∞ for each n ∈ N.
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In what follows, we show how to construct measure algebras from a topo-
logical space, X, together with a Borel measure on X. The relevant definition
is given below.

Definition 5.4. Let X be a topological space. We say that µ is a Borel mea-
sure on X if µ is a measure defined on the σ-algebra of Borel subsets of X.2

Let X be a topological space, and let µ be a σ-finte Borel measure on X. We
let Borel(X) denote the collection of Borel subsets of X and let Nullµ denote
the collection of measure-zero Borel sets in X. Then Borel(X) is a Boolean
σ-algebra, and Nullµ is a σ-ideal in Borel(X). We form the quotient algebra

Mµ
X = Borel(X)/Nullµ

(Equivalently, we can define the equivalence relation ∼ on Borel sets in X by
A ∼ B iff µ(A4B) = 0, where 4 denotes symmetric difference. Then Mµ

X

is the algebra of equivalence classes under ∼.) Boolean operations in Mµ
X are

defined in the usual way in terms of underlying sets:

|A| ∨ |B| = |A ∪B|
|A| ∧ |B| = |A ∩B|
−|A| = |X −A|

Lemma 5.5. There is a unique measure ν on Mµ
X such that ν|A| = µ(A) for

all A in Borel(X). Moreover, the measure ν is σ-finite and positive.

Proof. See [6], pg. 79.

It follows from Lemma 5.5 thatMµ
X is a measure algebra. We follow Halmos

[6] in referring to any algebra of the formMµ
X as a reduced measure algebra .3

Lemma 5.6. Let X be a topological space and let µ be a σ-finite Borel measure
on X. Then for any |A|, |B| ∈ Mµ

X , |A| ≤ |B| iff A ⊆ B ∪ N for some N ∈
Nullµ.

Proof. (⇒) If |A| ≤ |B|, then |A| ∧ |B| = |A|, or equivalently |A ∩ B| = |A|.
This means that (A∩B)4A ∈ Nullµ, so A−B ∈ Nullµ. But A ⊆ B∪(A−B).
(⇐) Suppose A ⊆ B ∪ N for some N ∈ Nullµ. Then A ∩ (B ∪ N) = A, and
|A| ∧ |B ∪N | = |A|. But |B ∪N | = |B|, so |A| ∧ |B| = |A|, and |A| ≤ |B|.

For the remainder of this section, let X be a separable metric space, and let
µ be a σ-finite Borel measure on X. Where the intended measure is obvious,
we will drop superscripts, writing MX for Mµ

X .

2I.e., on the smallest σ-algebra containing all open subsets of X.
3In fact, Halmos allows as ‘measure algebras’ only algebras with a normalized measure.

We relax this constraint here, in order to allow for the ‘reduced measure algebra’ generated
by the entire real line together with the usual Lebesgue measure. This algebra is, of course,
isomorphic to Mµ

X , where X is the real interval [0, 1], and µ is the usual Lebesgue measure
on X. This amendment was suggested by the anonymous referee.
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So far we have seen only thatMµ
X is a Boolean algebra. In order to interpret

the �-modality of S4C in Mµ
X , we need to construct an interior operator on

this algebra (thus transforming Mµ
X into a topological Boolean algebra). We

do this via the topological structure of the underlying space, X. Let us say that
an element a ∈ Mµ

X is open if a = |U | for some open set U ⊆ X. We denote
the collection of open elements in Mµ

X by GµX (or, dropping superscripts, GX).

Proposition 5.7. GµX is closed under (i) finite meets and (ii) arbitrary joins.

Proof. (i) This follows from the fact that open sets in X are closed under finite
intersections. (ii) Let {ai | i ∈ I} be a collection of elements in GµX . We need to
show that sup {ai | i ∈ I} exists and is equal to some element in GµX . Since X
is separable, there exists a countable dense set D in X. Let B be the collection
of open balls in X centered at points in D with rational radius. Then any open
set in X can be written as a union of elements in B. Let S be the collection of
elements B ∈ B such that |B| ≤ ai for some i ∈ I. We claim that

sup {ai | i ∈ I} = |
⋃
S|

First, we need to show that |
⋃
S| is an upper bound on {ai | i ∈ I}. For each

i ∈ I, ai = |Ui| for some open set Ui ⊆ X. Since Ui is open, it can be written as
a union of elements in B. Moreover, each of these elements is a member of S (if
B ∈ B and B ⊆ Ui, then |B| ≤ |Ui| = ai). So Ui ⊆

⋃
S and ai = |Ui| ≤ |

⋃
S|.

For the reverse inequality (≥) we need to show that if m is an upper bound
on {ai | i ∈ I}, then |

⋃
S| ≤ m. Let m = |M |. Note that S is countable

(since S ⊆ B and B is countable). We can write S = {Bn |n ∈ N}. Then
for each n ∈ N, there exists i ∈ I such that |Bn| ≤ ai ≤ m. By Lemma 5.5,
Bn ⊆M ∪Nn for some Nn ∈ Nullµ. Taking unions,

⋃
nBn ⊆M ∪

⋃
nNn, and⋃

nNn ∈ Nullµ. By Lemma 5.5, |S| = |
⋃
nBn| ≤ m.

We can now define an interior operator, IµX , on Mµ
X via the collection of

open elements, GµX . For any a ∈Mµ
X , let

IµXa = sup {c ∈ GµX | c ≤ a}

Lemma 5.8. IµX is an interior operator.

Proof. For simplicity of notation, we let I denote IµX and let G denote GµX . Then
(I1) follows from the fact that 1 ∈ G. (I2) follows from the fact that a is an
upper bound on {c ∈ G | c ≤ a}. For (I3) note that by (I2), we have IIa ≤ Ia.
Moreover, if c ∈ G with c ≤ a, then c ≤ Ia (since Ia is supremum of all such
c). Thus

∨
{c ∈ G | c ≤ a} ≤

∨
{c ∈ G | c ≤ Ia}, and Ia ≤ IIa. For (I4)

note that since a ∧ b ≤ a, we have I(a ∧ b) ≤ Ia. Similarly, I(a ∧ b) ≤ Ib, so
I(a ∧ b) ≤ Ia ∧ Ib. For the reverse inequality, note that Ia ∧ Ib ≤ a (since
Ia ≤ a), and similarly Ia ∧ Ib ≤ b. So Ia ∧ Ib ≤ a ∧ b. Moreover, Ia ∧ Ib ∈ G.
It follows that Ia ∧ Ib ≤ I(a ∧ b).
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Remark 5.9. Is the interior operator IµX non-trivial? (That is, does there exist
a ∈ Mµ

X such that Ia 6= a?) This depends on the space, X, and the measure,
µ. If we let X be the real interval, [0, 1], and let µ be the Lebesgue measure on
Borel subsets of X, then the interior operator is non-trivial. For the proof, see
[8]. But suppose µ is a non-standard measure on the real interval, [0, 1], defined
by:

µ(A) =

{
1 if 1

2 ∈ A
0 otherwise

Then Borel([0, 1])/Nullµ is the algebra 2, and both elements of this algebra are
‘open.’ So Ia = a for each element a in the algebra.

Remark 5.10. The operator IµX does not coincide with taking topological inte-
riors on underlying sets. More precisely, it is in general not the case that for
A ⊆ X, IµX(|A|) = |Int (A)|, where ‘Int(A)’ denotes the topological interior of
A. Let X be the real interval [0, 1] with the usual topology, and let µ be Lebesgue
measure restricted to measurable subsets of X. Consider the set X − Q and
note that |X − Q| = |X| (Q is countable, hence has measure zero). We have:
IµX(|X −Q|) = IµX(|X|) = IµX(1) = 1. However, |Int (X −Q)| = |∅| = 0.

Remark 5.11. Note that an element a ∈ Mµ
X is open just in case IµXa = a.

Indeed, if a is open, then a ∈ {c ∈ GµX | c ≤ a}. So a = sup {c ∈ GµX | c ≤ a} =
IµXa. Also, if IµXa = a, then a is the join of a collection of elements in GµX , and
so a ∈ GµX . This shows that the definition of ‘open’ elements given above fits
with the definition in (1).

In what follows, it will sometimes be convenient to express the interior op-
erator IµX in terms of underlying open sets, as in the following Lemma:

Lemma 5.12. Let A ⊆ X. Then IµX(|A|) = |
⋃
{O open | |O| ≤ |A|}|

Proof. By definition of IµX , IµX(|A|) = sup{c ∈ GµX | c ≤ |A|}. Let B and D be
as in the proof of Proposition 5.7, and let S be the collection of elements B ∈ B
such that |B| ≤ |A|. Then by the proof of Proposition 5.7, IµX(|A|) = |

⋃
S|.

But now
⋃
S =

⋃
{O open | |O| ≤ |A|}. (This follows from the fact that any

open set O ⊆ X can be written as a union of elements in B.) Thus, IµX(|A|) =
|
⋃
S| = |

⋃
{O open | |O| ≤ |A|}|.

We have shown that Mµ
X together with the operator IµX is a topological

Boolean algebra. Of course, for purposes of our semantics, we are interested in
O-operators onMµ

X . How do such maps arise? Unsurprisingly, a rich source of
examples comes from continuous functions on the underlying topological space
X. Let us spell this out more carefully.

Definition 5.13. Let X and Y be topological spaces and let µ and ν be Borel
measures on X and Y respectively. We say f : X → Y is measure-zero
preserving (MZP) if for any A ⊆ Y , ν(A) = 0 implies µ(f−1(A)) = 0.
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Lemma 5.14. Let X and Y be separable metric spaces, and let µ and ν be σ-
finite Borel measures on X and Y respectively. Suppose B is a Borel subset of X
with µ(B) = µ(X), and f : B → Y is measure-zero preserving and continuous.

Define h
|·|
f :Mν

Y →M
µ
X by

h
|·|
f (|A|) = |f−1(A)|

Then h
|·|
f is an O-map. In particular, if X = Y , then h

|·|
f is an O-operator.

Proof. First, we must show that h
|·|
f is well-defined.4 Indeed, if |A| = |B|, then

ν(A4B) = 0. And since f is MZP, µ (f−1(A)4 f−1(B)) = µ (f−1(A4B)) =

0. So f−1(A) ∼ f−1(B). This shows that h
|·|
f |A| is independent of the choice of

representative, A. Furthermore, it is clear that h
|·|
f is a Boolean homomorphism.

To see that it is an O-map, we need only show that if c ∈ GνY , h
|·|
f (c) ∈ GµX .

But if c ∈ GνY then c = |U | for some open set U ⊆ Y . By continuity of
f , f−1(U) is open in B. So f−1(U) = O ∩ B for some O open in X. So

h
|·|
f (c) = |f−1(U)| = |O| ∈ GµX .

By the results of the previous section, we can now interpret the language
of S4C in reduced measure algebras. In particular, we say an algebraic model
〈A, h, V 〉 is a dynamic measure model if A =Mµ

X for some separable metric
space X and a σ-finite Borel measure µ on X.

We are particularly interested in the reduced measure algebra generated by
the real interval, [0, 1], together with the usual Lebesgue measure.

Definition 5.15. (Lebesgue Measure Algebra) Let I be the real interval [0, 1]
and let λ denote Lebesgue measure restricted to the Borel subsets of I. The
Lebesgue measure algebra is the algebra Mλ

I .

Because of it’s central importance, we denote the Lebesgue measure algebra
without subscripts or superscripts, byM. Furthermore, we denote the collection
of open elements in M by G and the interior operator on M by I.

As in Definition 4.6, we let DMLM = {φ | |=M φ} (i.e., the set of validities
in M). In our terminology, soundness of S4C for M is the claim: S4C ⊆
DMLM. Completeness of S4C for M is the claim: DMLM ⊆ S4C.

Proposition 5.16. (Soundness) S4C ⊆ DMLM.

Proof. Immediate from Proposition 4.7.

Remark 5.17. The algebra M is isomorphic to the algebra Leb([0, 1])/Nullµ
where Leb([0, 1]) is the σ-algebra of Lebesgue-measureable subsets of the real
interval [0, 1], and Nullµ is the σ-ideal of Lebesgue measure-zero sets. This
follows from the fact that every Lebesgue-measureable set in [0, 1] differs from
some Borel set by a set of measure zero.

4Note that by continuity of f , f−1(A) is a Borel set in B, hence also a Borel set in X.
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6 Isomorphism between Reduced Measure Al-
gebras

In this section we use a well-known result of Oxtoby’s to show that any reduced
measure algebra generated by a topologically complete, separable metric space
with a σ-finite, nonatomic Borel measure is isomorphic to M. By Oxtoby’s
result, we can think of M as the canonical separable measure algebra.

In the remainder of this section, let J denote the space [0, 1]−Q (with the
usual metric topology), and let δ denote Lebesgue measure restricted to the
Borel subsets of J .

Definition 6.1. A topological space X is topologically complete if X is
homeomorphic to a complete metric space.

Definition 6.2. Let X be a topological space. A Borel measure µ on X is
nonatomic if µ({x}) = 0 for each x ∈ X.

Theorem 6.3. (Oxtoby, 1970) Let X be a topologically complete, separable
metric space, and let µ be a normalized, nonatomic Borel measure on X. Then
there exists a Borel set B ⊆ X and a function f : B → J such that µ(X−B) = 0
and f is a measure-preserving homeomorphism (where the measure on J is δ).

Proof. See [10].

Lemma 6.4. 5 Suppose X and Y are separable metric spaces, and µ and ν are
normalized Borel measures on X and Y respectively. If f : X → Y is a measure
preserving homoemorphism, then Mµ

X is isomorphic to Mν
Y .

Proof. For simplicity of notation, we drop superscripts, writing simply MX ,

GX , and IX , etc. Let h
|·|
f :MY →MX be defined by h

|·|
f (|A|) = |f−1(A)|. This

function is well-defined because f is MZP and continuous. (The first property

ensures that h
|·|
f (|A|) is independent of representative A; the second ensures that

f−1(A) is Borel.) Clearly h
|·|
f is a Boolean homomorphism. We can define the

mapping h
|·|
f−1 : MX → MY by h

|·|
f−1(|A|) = |f(A)|. Then h

|·|
f and h

|·|
f−1 are

inverses, so h
|·|
f is bijective. We need to show that h

|·|
f preserves interiors—i.e.,

h
|·|
f (IY a) = IXh

|·|
f (a). The inequality (≤) follows from the fact that h

|·|
f is an O-

map (see Lemma 5.14). For the reverse inequality, we need to see that h
|·|
f (IY a)

is an upper bound on {c ∈ GX | c ≤ h
|·|
f (a)}. If c ∈ GX , then h

|·|
f−1(c) ∈ GY

and if c ≤ h
|·|
f (a), then h

|·|
f−1(c) ≤ h

|·|
f−1(h

|·|
f (a)) = a. Thus h

|·|
f−1(c) ≤ IY a, and

c = h
|·|
f (h

|·|
f−1(c)) ≤ h|·|f (IY a).

5We can relax the conditions of the lemma, so that instead of requiring that f is measure-
preserving, we require only that ν(f(S)) = 0 iff µ(A) = 0. In fact, we can further relax these
conditions so that f : B → C, where B ⊆ X, C ⊆ Y , µ(B4X) = 0, and ν(C4Y ) = 0. We
prove the lemma as stated because only this weaker claim is needed for the proof of Corollary
6.5.
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Corollary 6.5. Let X be a separable metric space, and let µ be a nonatomic
σ-finite Borel measure on X with µ(X) > 0. Then,

Mµ
X
∼=M

Proof. By Lemma 5.3, we can assume that µ is normalized.6 Let Xcomp be
the completion of the metric space X. Clearly Xcomp is separable. We can
extend the Borel measure µ on X to a Borel measure µ∗ on Xcomp by letting
µ∗(S) = µ(S∩X) for any Borel set S in Xcomp. The reader can convince himself
that µ∗ is a normalized, nonatomic, σ-finite Borel measure on Xcomp, and that

Mµ∗

Xcomp

∼=Mµ
X . By Theorem 6.3, there exists a set B ⊆ Xcomp and a function

f : B → J such that µ(B) = 1 and f is a measure-preserving homeomorphism.
By Lemma 6.4, MJ ∼=MB . We have:

M∼=MJ ∼=MB
∼= Mµ∗

Xcomp

∼=Mµ
X

7 Invariance Maps

At this point, we have at our disposal two key results: completeness of S4C for
finite stratified Kripke frames, and the isomorphism between Mµ

X and M for
any separable metric space X and σ-finite, nonatomic Borel measure µ. Our
aim in what follows will be to transfer completeness from finite stratified Kripke
frames to the Lebesgue measure algebra, M. But how to do this?

We can view any topological space as a topological Boolean algebra—indeed,
as the topological field of all subsets of the space (see Example 4.2). Viewing
the finite stratified Kripke frames in this way, what we need is ‘truth-preserving’
maps between the algebras generated by Kripke frames and Mµ

X , for appropri-
ately chosen X and µ. The key notion here is that of a “dynamic embedding”
(defined below) of one dynamic algebra into another. Although our specific
aim is to transfer truth from Kripke algebras to reduced measure algebras, the
results we present here are more general and concern truth preserving maps
between arbitrary dynamic algebras.

Recall that a dynamic algebra is a pair 〈A, h〉, where A is a topological
Boolean algebra, and h is an O-operator on A.

Definition 7.1. Let M1 = 〈A1, h1〉 and M2 = 〈A2, h2〉 be two dynamic algebras.
We say a function h : M1 →M2 is a dynamic embedding if

(i) h is an embedding of A1 into A2;

(ii) h ◦ h1 = h2 ◦ h.

6More explicitly: If µ is σ-finite, then by Lemma 5.3 there is a normalized Borel measure

µ∗ on X such that µ∗(S) = 0 iff µ(S) = 0 for each S ⊆ X. It follows that Mµ
X
∼= Mµ∗

X
(where the isomorphism is not, in general, measure-preserving).
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Lemma 7.2. Let M1 = 〈A1, h1, V1〉 and M2 = 〈A2, h2, V2〉 be two dynamic
algebraic models. Suppose that h : 〈A1, h1〉 → 〈A2, h2〉 is a dynamic embedding,
and for every propositional variable p,

V2(p) = h ◦ V1(p)

Then for any φ ∈ L�,©,
V2(φ) = h ◦ V1(φ)

Proof. By induction on the complexity of φ.

Corollary 7.3. Let M1 = 〈A1, h1, V1〉 and M2 = 〈A2, h2, V2〉 be two dynamic
algebraic models. Suppose that h : 〈A1, h1〉 → 〈A2, h2〉 is a dynamic embedding,
and for every propositional variable p,

V2(p) = h ◦ V1(p)

Then for any φ ∈ L�,©,

M1 |= φ iff M2 |= φ

Proof. M2 |= φ iff V2(φ) = 1

iff h ◦ V1(φ) = 1 (by Lemma 7.2)

iff V1 = 1 (since h is an embedding)

Let 〈X,F 〉 be a dynamic topological space and let AX be the topological
field of all subsets of X (see Example 4.2). We define the function hF on AX
by

hF (S) = F−1(S)

It is not difficult to see that hF is an O-operator. We say that 〈AX , hF 〉 is
the dynamic algebra generated by (or corresponding to) to the dynamic
topological space 〈X,F 〉.

Our goal is to embed the dynamic algebras generated by finite dynamic
Kripke frames into a dynamic measure algebra, 〈Mµ

X , h〉, where X is some
appropriately chosen separable metric space and µ is a nonatomic, σ-finite Borel
measure on X. In view of Corollary 7.3 and completeness for finite dynamic
Kripke frames, this will give us completeness for the measure semantics. The
basic idea is to construct such embeddings via ‘nice’ maps on the underlying
topological spaces. To this end, we introduce the following new definition:

Definition 7.4. Suppose X and Y are a topological spaces, and µ is a Borel
measure on X. Let γ : X → Y . We say γ has the M-property with respect to
µ if for any subset S ⊆ Y :

(i) γ−1(S) is Borel;

(ii) for any open set O ⊆ X, if γ−1(S) ∩O 6= ∅ then µ(γ−1(S) ∩O) > 0.
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Lemma 7.5. Suppose 〈X,F 〉 is a dynamic topological space, where X is a
separable metric space, F is measure-zero preserving, and let µ be a σ-finite
Borel measure on X with µ(X) > 0. Suppose 〈Y,G〉 is a dynamic topological
space, and 〈AY , hG〉 is the corresponding dynamic algebra. Let B be a subset of
X with µ(B) = µ(X), and suppose we have a map γ : B → Y that satisfies:

(i) γ is continuous, open and surjective;

(ii) γ ◦ F = G ◦ γ;

(iii) γ has the M-property with respect to µ.

Then the map Φ : 〈AY , hG〉 → 〈Mµ
X , h

|·|
F 〉 defined by

Φ(S) = |γ−1(S)|

is a dynamic embedding.

Proof. By the fact that Mµ
X is isomorphic to Mµ

B , we can view Φ as a map

from 〈AY , hG〉 into 〈Mµ
B , h

|·|
F 〉, where hµF is viewed as an operator onMµ

B . Note
that Φ is well-defined by the fact that γ satisfies clause (i) of the M-property.

We need to show that (i) Φ is an embedding of 〈AY , hG〉 into 〈Mµ
B , h

|·|
F 〉, and

(ii) Φ ◦ hG = h
|·|
F ◦ Φ.

(i) Clearly Φ is a Boolean homomorphism. We prove that Φ is injective and
preserves interiors.

• (Injectivity) Suppose Φ(S1) = Φ(S2) and S1 6= S2. Then γ−1(S1) ∼
γ−1(S2), and S14S2 6= ∅. Let y ∈ S14S2. By surjectivity of
γ, we have γ−1(y) 6= ∅. Moreover, µ(γ−1(y)) > 0 ( since γ has
the M-property w.r.t. µ, and the entire space B is open). So
µ(γ−1(S1)4 γ−1(S2)) = µ(γ−1(S14S2)) ≥ µ(γ−1(y)) > 0. And
γ−1(S1) 6∼ γ−1(S2). ⊥.

• (Preservation of Interiors) For clarity, we will denote the topological
interior in the spaces Y and B by IntY and IntB respectively, and the
interior operator onMµ

B by I. Let S ⊆ Y . It follows from continuity
and openness of γ : B → Y , that

γ−1(IntY (S)) = IntB(γ−1(S))

Note that,

– Φ(IntY (S)) = | γ−1(IntY (S)) |
= | IntB(γ−1(S)) |

= |
⋃
{O open in B | O ⊆ γ−1(S) } |

– I(Φ(S)) = I |γ−1(S)|

= |
⋃
{O open in B | |O| ≤ |γ−1(S)| } | (by Lemma 5.12)
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Thus it is sufficient to show that for any open set O ⊆ B,

O ⊆ γ−1(S) iff |O| ≤ |γ−1(S)|

The left-to-right direction is obvious. For the right-to-left direction,
suppose (toward contradiction) that |O| ≤ |γ−1(S)| but that O 6⊆
γ−1(S). Then O ⊆ γ−1(S) ∪ N for some N ⊆ B with µ(N) = 0.
Moreover, since O 6⊆ γ−1(S), there exists x ∈ O such that x /∈
γ−1(S). Let y = γ(x). Then γ−1(y) ∩ O 6= ∅. Since γ has the
M-property with respect to µ, it follows that µ(γ−1(y) ∩ O) > 0.
But γ−1(y) ∩ O ⊆ N (since γ−1(y) ∩ O ⊆ O ⊆ γ−1(S) ∪ N , and
γ−1(y) ∩ γ−1(S) = ∅). ⊥.

We’ve shown that Φ is an embedding of 〈AY , hG〉 into 〈Mµ
B , h

|·|
F 〉. In view

of the isomorphism between Mµ
X and Mµ

B , we have shown that Φ is an
embedding of 〈AY , hG〉 into Mµ

X .

(ii) We know that γ◦F = G◦γ. Taking inverses, we have F−1◦γ−1 = γ−1◦G−1.
Now let S ⊆ Y . Then:

Φ ◦ hG(S) = |γ−1(G−1(S))|
= |F−1(γ−1(S))|

= h
|·|
F ◦ Φ(S)

8 Completeness of S4C for the Lebesgue Mea-
sure Algebra

In this section we prove the main result of the paper: Completeness of S4C for
the Lebesgue measure algebra, M. Recall that completeness is the claim that
DMLM ⊆ S4C. In fact, we prove the contrapositive: For any formula φ ∈
L�,©, if φ /∈ S4C, then φ /∈ DMLM. Our strategy is as follows. If φ is a non-
theorem of S4C, then by Lemma 3.7, φ is refuted in some finite stratified Kripke
frame K = 〈W,R,G〉. Viewing the frame algebraically (i.e., as a topological
field of sets), we must construct a dynamic embedding Φ : 〈AW , hG〉 → 〈M, h〉,
where 〈AW , hG〉 is the dynamic Kripke algebra generated by the dynamic Kripke
frame K, and h is some O-operator onM. In view of the isomorphism between
M and Mµ

X for any separable metric space, X, and nonatomic, σ-finite Borel
measure µ on X with µ(X) > 0, it is enough to construct a dynamic embedding
of the Kripke algebra into Mµ

X , for appropriately chosen X and µ.
The constructions in this section are a modification of the constructions in-

troduced in [14], where it is proved that S4C is complete for topological models
in Euclidiean spaces of arbitrarily large finite dimension. The modifications we
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make are measure-theoretic, and are needed to accommodate the new ‘proba-
bilistic’ setting. We are very much indebted to Slavnov for his pioneering work
in [14].7

8.1 Outline of the Proof

Let us spell out the plan for the proof a little more carefully. The needed
ingredients are all set out in Lemma 7.5. Our first step will be to construct the
dynamic topological space 〈X,F 〉, where X is a separable metric space, and F
is a measure-zero preserving, continuous function on X. We must also construct
a measure µ on the Borel sets of X that is nonatomic and σ-finite, such that

µ(X) > 0. We want to embed the Kripke algebra 〈AW , hG〉 into 〈Mµ
X , h

|·|
F 〉,

and to do this, we must construct a topological map γ : B →W , where B ⊆ X
and µ(B) = 1, and γ satisfies the requirements of Lemma 7.5. In particular, we
must ensure that (i) γ is open, continuous and surjective, (ii) γ ◦F = G◦γ and
(iii) γ has the M-property with respect to µ.

In Section 8.2, we show how to construct the dynamic space 〈X,F 〉, and the
Borel measure µ on X. In Section 8.3, we construct the map γ : X → W , and
show that it has the desired properties.

8.2 The Topological Carrier of the Countermodel

Let
Xn = I1 t · · · t In

where Ik is the k-th dimensional unit cube and t denotes disjoint union. We
would like Xn to be a metric space, so we think of the cubes Ik as embedded
in the space Rn, and as lying at a certain fixed distance from one another. For
simplicity of notation, we denote points in Ik by (x1, . . . , xk), and do not worry
about how exactly these points are positioned in Rn.

For each k < n, define the map Fk : Ik → Ik+1 by (x1, . . . , xk) 7→ (x1, . . . , xk,
1
2 ).

We let

F (x) =

 Fk(x) if x ∈ Ik, k < n

x if x ∈ In

Clearly F is injective. For each k ≥ 2 we choose a privileged “midsection”
Dk = [0, 1]k−1 × { 12} of Ik. Thus, f(Ik) = Dk+1 for k < n.

The space Xn will be the carrier of our countermodels (we will choose n
according to the ©-depth of the formula which we are refuting, as explained in
the next section). We define a non-standard measure, µ, on Xn. This somewhat
unusual measure will allow us to transfer countermodels on Kripke frames back
to the measure algebra, Mµ

Xn
.

7Where possible, we have preserved Slavnov’s original notation in [14].
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x

y

z

I1 I2 I3

D2 D3

Figure 1: The space X3 = I1 t I2 t I3. Note that µ(I1) = 1, µ(I2) = 2, and
µ(I3) = 3. The shaded regions in I2 and I3 denote the midsections, D2 and
D3, respectively.

Let µ on I1 be Lebesgue measure on R restricted to Borel subsets of I1.
Suppose we have defined µ on I1, . . . , Ik. For any Borel set B in Ik+1, let
B1 = B ∩Dk+1, and B2 = B \Dk+1. Then B = B1 tB2. We define

µ(B) = µ(F−1(B1)) + λ(B2)

where λ is the usual Lebesgue measure in Rk+1. Finally, for any Borel set
B ⊆ Xn, we let µ(B) =

∑n
k=1 µ(B ∩ Ik)

Note that µ(I1) = 1, and in general µ(Ik+1) = µ(Ik) + 1. Thus µ(Xn) =
µ(I1 t · · · t In) =

∑n
1 k = 1

2 (n2 + n).

Lemma 8.1. µ is a nonatomic, σ-finite Borel measure on Xn.

Proof. Clearly µ is nonatomic. Moreover, since µ(Xn) < ∞, µ is σ-finite. The
only thing left to show is that µ is countably additive. Suppose that {Bm}m∈N
is a collection of pairwise disjoint subsets of Xn.

Claim 8.2. For any k ≤ n,

µ (
⋃
m

(Bm ∩ Ik)) =
∑
m

µ(Bm ∩ Ik)

(Proof of Claim: By induction on k.8)
But now we have:

8The base case is by countable additivity of Lebesgue measure on the unit interval, [0, 1].
For the induction step, suppose the claim is true for k − 1. Then we have:
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µ(
⋃
m

Bm) =
∑
k

µ[(
⋃
m

Bm) ∩ Ik] (by definition of µ)

=
∑
k

µ[
⋃
m

(Bm ∩ Ik)]

=
∑
k

∑
m

µ(Bm ∩ Ik) (by Claim 8.2)

=
∑
m

∑
k

µ(Bm ∩ Ik)

=
∑
m

µ(Bm) (by definition of µ)

Lemma 8.3. X is a separable metric space and F : Xn → Xn is measure-
preserving and continuous.

Proof. The set of rational points in Ik is dense in k (k ≤ n), so Xn is separable.
Continuity of F follows from the fact that F is a translation in Rn; F is measure-
preserving by the construction of µ.

8.3 Completeness

Assume we are given a formula φ ∈ L�,© such that φ is not a theorem of S4C
and let n = CD(φ) + 1. By Lemma 3.7, there is a finite stratified, dynamic
Kripke model K = 〈W,R,G, V1〉 of depth n such that φ is refuted at the root of
K. In other words, there is a collection of pairwise disjoint cones W1, . . . ,Wn

with roots w1
0, . . . , w

n
0 respectively, such that W =

⋃
k≤nWk; G is injective;

and G(wk) = wk+1 for each k < n; and K,w1
0 6|= φ. Let the space X = Xn =

I1 t · · · t In and the measure µ be as defined in the previous section. We
construct a map γ̃ : X → W in a countable number of stages. To do this we
will make crucial use of the notion of ε-nets, defined below:

Definition 8.4. Given a metric space S and ε > 0, a subset Ω of S is an ε-net
for S if for any y ∈ S, there exists x ∈ Ω such that d(x, y) < ε (where d denotes
the distance function in S).

Observe that if S is compact, then for any ε > 0 there is a finite ε-net for S.

µ(
⋃
m

(Bm ∩ Ik)) = µ [F−1(
⋃
m

(Bm ∩ Ik ∩Dk))] + λ [
⋃
m

(Bm ∩ Ik) \Dk] (by definition of µ)

= µ [
⋃
m

F−1(Bm ∩ Ik ∩Dk)] +
∑
m

λ((Bm ∩ Ik) \Dk) (by countable additivity of λ)

=
∑
m

µ[F−1(Bm ∩ Ik ∩Dk)] +
∑
m

λ((Bm ∩ Ik) \Dk) (by induction hypothesis)

=
∑
m

µ[F−1(Bm ∩ Ik ∩Dk)] + λ((Bm ∩ Ik) \Dk)

=
∑
m

(Bm ∩ Ik) (by definition of µ)
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Basic Construction. Let w1
root = w1

0, and let w1, . . . , wr1 be the R-
successors of w1

root. At the first stage, we select r1 pairwise disjoint closed
cubes T1, . . . , Tr1 in I1, making sure that their total measure adds up to no
more than ( 1

2 )0+2—that is,
∑
k≤r1 µ(Tk) < 1

4 . For each x in the interior of Tk
we let γ̃(x) = wk (k ≤ r1). With slight abuse of notation we put γ̃(Tk) = wk.
We refer to T1, . . . , Tr1 as terminal cubes, and we let I11 = I1 −

⋃r1
k=1 Int (Tk).

At any subsequent stage, we assume we are given a set I1i that is equal to
I1 with a finite number of open cubes removed from it. Thus I1i is a compact
set. We find a 1

2i -net Ωi for I1i and for each point y ∈ Ωi, we choose r1 pairwise
disjoint closed cubes, T y1 , . . . , T

y
r1 in the 1

2i -neighborhood of y, putting γ̃(T yk ) =
wk (for k ≤ r1, with the same meaning as above). Again, we refer to the Tk’s
as terminal cubes. Since Ωi is finite, we create only a finite number of new
terminal cubes at this stage, and we make sure to do this in such a way as to
remove a total measure of no more than ( 1

2 )i+2. We let I1i+1 be the set I1i minus
the interiors of the new terminal cubes.

After doing this countably many times, we are left with some points in I1

that do not belong to the interior of any terminal cube. We call such points
exceptional points and we put γ̃(x) = w1

root for each exceptional point x ∈ I1.
This completes the definition of γ̃ on I1.

Now assume that we have already defined γ̃ on Ij . We let wj+1
root = wj+1

0 and

let w1, . . . , wrj+1
be the R-successors of wj+1

root. We define γ̃ on Ij+1 as follows. At
first we choose rj+1 closed cubes T1, . . . , Trj+1

in Ij+1, putting γ̃(Tk) = wk (for
k ≤ rj+1). In choosing T1, . . . , Trj+1

, we make sure that these cubes are not only
pairwise disjoint (as before) but also disjoint from the midsection Dj+1. Again,
we also make sure to remove a total measure of no more than ( 1

2 )0+2 µ(Ij+1).

We let Ij+1
1 = Ij+1 −

⋃rj+1

k=1 Int(Tk).

At stage i, we assume we are given a set Ij+1
i equal to Ij+1 minus the interiors

of a finite number of closed cubes. Thus Ij+1
i is compact, and we choose a finite

1
2i -net Ωi for Ij+1

i . For each y ∈ Ωi we choose rj+1 closed terminal cubes
T1, . . . , Trj+1

in the 1
2i -neighborhood of y. We make sure that these cubes are

not only pairwise disjoint, but disjoint from the midsection Dj+1. Since Ωi is
finite, we add only finitely many new terminal cubes in this way. It follows that
there is an ε-neighborhood of Dj+1 that is disjoint from all the terminal cubes
added up to this stage. Moreover, for each terminal cube T of Ij defined at the
ith stage, F (T ) ⊆ Dj+1, and we let T ′ be some closed cube in Ij+1 containing
F (T ) and of height at most ε. To ensure that the equality γ̃ ◦ F (x) = G ◦ γ̃(x)
holds for all points x belonging to the interior of terminal cubes of Ij , we put:

γ̃(T ′) = G ◦ γ̃(T )

Finally, we have added only finitely many terminal cubes at this stage, and we
do so in such a way as to make sure that the total measure of these cubes is no
more than ( 1

2 )i+2 µ(Ij+1). We let Ij+1
i+1 be the set Ij+1

i minus the new terminal
cubes added at this stage.

We iterate this process countably many times, removing a countable number
of terminal cubes from Ij+1. For all exceptional points x in Ij+1 (i.e., points
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that do not belong to the interior of any terminal cube defined at any stage) we
put γ̃(x) = wj+1

root. Noting that exceptional points of Ij are pushed forward under
F to exceptional points in Ij+1, we see that the equality γ̃ ◦ F (x) = G ◦ γ̃(x)
holds for exceptional points as well.

This completes the construction of γ̃ on X. We pause now to prove two facts
about the map γ̃ that will be of crucial importance in what follows.

Lemma 8.5. Let E(Ij) be the collection of all exceptional points in Ij for some
j ≤ n. Then µ(E(Ij)) ≥ 1

2 µ(Ij).

Proof. At stage i of construction of γ̃ on Ij , we remove from Ij terminal cubes
of total measure no more than ( 1

2 )i+2 µ(Ij). Thus over countably many stages
we remove a total measure of no more than µ(Ij)

∑
i≥0( 1

2 )i+2 = 1
2 µ(Ij). The

remaining points in Ij are all exceptional, so µ(E(Ij)) ≥ µ(Ij) − 1
2 µ(Ij) =

1
2 µ(Ij).

Lemma 8.6. Let x ∈ Ij be an exceptional point for some j ≤ n. Then γ̃(x) =
wj0, and for any ε > 0 and any wk ∈ Wj there is a terminal cube T contained
in the ε-neighborhood of x with γ̃(T ) = wk.

Proof. Since x ∈ Ij is exceptional, it belongs to Iji for each i ∈ N. We can
pick i large enough so that 1

2i < ε
2 . But then in the notations above, there

exists a point y ∈ Ωi such that d(x, y) < ε
2 . The statement now follows from

the Basic Construction, since for each wk ∈ Wj there is a terminal cube Tk
in the 1

2i -neighborhood of y (and so also in the ε
2 -neighborhood of y) with

γ̃(Tk) = wk.

Construction of the maps, γl. In the basic construction we defined a map
γ̃ : X →W that we will use in order to construct a sequence of ‘approximation’
maps, γ1, γ2, γ3, . . . ..., where γ1 = γ̃. In the end, we will construct the needed
map, γ, as the limit (appropriately defined) of these approximation maps. We
begin by putting γ1 = γ̃. The terminal cubes of γ1 and the exceptional points of
γ1 are the terminal cubes and exceptional points of the Basic Construction. Note
that each of I1, . . . , In contains countably many terminal cubes of γ1 together
with exceptional points that don’t belong to any terminal cube.

Assume that γl is defined and that for each terminal cube T of γl, all points
in the interior of T are mapped by γl to a single element in W , which we denote
by γl(T ). Moreover, assume that:

(i) γl ◦ F = G ◦ γl

(ii) for any terminal cube T of γl in Ij , F maps T into some terminal cube T ′

of γl in Ij+1, for j < n

where F is again the embedding (x1, . . . , xj) 7→ (x1, . . . , xj ,
1
2 ).

We now define γl+1 on the interiors of the terminal cubes of γl. In particular,
for any terminal cube T of γl in I1, let T 1 = T and let T j+1 be the terminal
cube of Ij+1 containing F (T j), for j < n. Then we have a system T 1, . . . , Tn
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exactly like the system I1, . . . , In in the Basic Construction. We define γl+1

on the interiors of T 1, . . . , Tn in the same way as we defined γ̃ on I1, . . . , In,
letting wjroot = γl(T

j) and letting w1, . . . , wrj be the R-successors of wjroot. The
only modification we need to make is a measure-theoretic one. In particular,
in each of the terminal cubes T j , we want to end up with a set of exceptional
points that carries non-zero measure (this will be important for proving that
the limit map we define, γ, has the M-property with respect to µ). To do this,
assume γl+1 has been defined on T 1, . . . , T j , and that for k ≤ j, µ(E(T k)) ≥
1
2µ(T k), where E(T k) is the set of exceptional points in T k. When we define
γl+1 on T j+1, we make sure that at the first stage we remove terminal cubes

with a total measure of no more than 1
2

0+2
µ(T j+1). At stage i where we are

given T j+1
i we remove terminal cubes with a total measure of no more than

( 1
2 )i+2 µ(T j+1). Again, this can be done because at each stage i we remove

only a finite number of terminal cubes, so we can make the size of these cubes
small enough to ensure we do not exceed the allocated measure. Thus, over
countably many stages we remove from T j+1 a total measure of no more than
µ(T j+1)

∑
i≥0 ( 1

2 )i+2 = 1
2 µ(T j+1). Letting E(T j+1) be the set of exceptional

points in T j+1, we have µ(E(T j+1)) ≥ 1
2 µ(T j+1).

We do this for each terminal cube T of γl in I1. Next we do the same for all
the remaining terminal cubes T of γl in I2 (i.e. those terminal cubes in I2 that
are disjoint from D2), and again, for all the remaining terminal cubes T of γl in
I3 (the terminal cubes in I3 that are disjoint from D3), etc. At the end of this
process we have defined γl+1 on the interior of each terminal cube of γl. For
any point x ∈ X that does not belong to the interior of any terminal cube of γl,
we put γl+1(x) = γl(x). The terminal cubes of γl+1 are the terminal cubes of
the Basic Construction applied to each of the terminal cubes of γl. The points
in the interior of terminal cubes of γl that do not belong to the interior of any
terminal cube of γl+1 are the exceptional points of γl+1.

In view of the measure-theoretic modifications we made above, we have the
following analog of Lemma 8.5:

Lemma 8.7. Let l ∈ N and let T be any terminal cube of γl and E(T ) be the
set of exceptional points of γl+1 in T . Then

µ(E(T )) ≥ 1

2
µ(T )

Furthermore, the reader can convince himself that we have the following
analog of Lemma 8.6 for the maps γl:

Lemma 8.8. Let x be an exceptional point of γl and let γl(x) = w. Then for
any ε > 0 and any v such that wRv, there is a terminal cube T of γl contained
in the ε-neighborhood of x with γl(T ) = v.

Finally, note that if x is an exceptional point of γl for some l, then γl(x) =
γl+k(x) for any k ∈ N. We let B denote the set of points that are exceptional
for some γl, and define the map γ : B →W as follows:

γ(x) = lim
l→∞

γl(x)
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Lemma 8.9. µ(B) = µ(X).

Proof. Let Tl be the set of all points that belong to some terminal cube of
γl. Note that Tl ⊇ Tl+1 for l ∈ N, and µ(T1) is finite. Thus µ(

⋂
l Tl) =

liml→∞ µ(Tl) = 0. (The limit value follows from Lemma 8.7.) Finally, note that
B = X −

⋂
l Tl. So B is Borel, and µ(B) = µ(X)− µ(

⋂
l Tl) = µ(X).

We have constructed a map γ : B → W where µ(B) = µ(X). Moreover, by
the Basic Construction, we have γl ◦ F (x) = G ◦ γl(x) for each l ∈ N. It follows
that γ ◦ F (x) = G ◦ γ(x) for x ∈ B. All that is left to show is that (i) γ is
continuous, open, and surjective; and (ii) γ has the M-property with respect to
µ.

Lemma 8.10. γ has the M-property with respect to µ.

Proof. We show that for any subset S ⊆ W , (i) γ−1(S) is Borel; and (ii) for
any open set O ⊆ X, if γ−1(S) ∩ O 6= ∅ then µ(γ−1(S) ∩ O) 6= 0. Note that
since W is finite, it is sufficient to prove this for the case where S = {w} for
some w ∈W .

(i) Note that x ∈ γ−1(w) iff x is exceptional for some γl and x belongs to some
terminal cube T of γl−1, with γl−1(T ) = w. There are only countably
many such cubes, and the set of exceptional points in each such cube is
closed. So γ−1(w) is a countable union of closed sets, hence Borel.

(ii) Suppose that O is open in X with γ−1(w) ∩ O 6= ∅. Let x ∈ γ−1(w) ∩
O. Again, x is exceptional for some γl. Pick ε > 0 such that the ε-
neighborhood of x is contained in O. By Lemma 8.8, there is a terminal
cube T of γl contained in the ε-neighborhood of x such that γl(T ) = w
(since wRw). Letting E(T ) be the set of exceptional points of γl+1 in T , we
know that E(T ) ⊆ γ−1(w). But by Lemma 8.7, µ(E(T )) ≥ 1

2µ(T ) > 0. So
E(T ) is a subset of γ−1(w)∩O of non-zero measure, and µ(γ−1(w)∩O) > 0.

In what follows, for any w ∈ W , let Uw = {v ∈ W |wRv} (i.e., Uw is the
smallest open set in W containing w).

Lemma 8.11. γ is continuous.

Proof. Let U be an open set in W and suppose that x ∈ γ−1(U). Let γ(x) =
w ∈ U . Then x is exceptional for some γl. So x belongs to an (open) terminal
cube T of γl−1 with γl−1(T ) = w. By R-monotonicity of 〈γl(y)〉 for all y ∈ B,
we know that for any y ∈ T , γ(y) ∈ Uw—i.e., T ⊆ γ−1(Uw). Moreover, since
w ∈ U and U is open, we have Uw ⊆ U . Thus x ∈ T ⊆ γ−1(U). This shows
that γ−1(U) is open in X.

Lemma 8.12. γ is open.
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Proof. Let O be open in B and let w ∈ γ(O). We show that Uw ⊆ γ(O). We
know that there exists x ∈ O such that γ(x) = w. Moreover, x is exceptional for
some γl. Pick ε > 0 small enough so that the ε-neighborhood of x is contained
in O. By Lemma 8.8, for each v ∈ Uw there is a terminal cube Tv of γl contained
in the ε-neighborhood of x such that γl(Tv) = v. But then for any exceptional
point yv of γl+1 that lies in Tv, we have γ(yv) = γl+1(yv) = v, and yv ∈ O. We
have shown that for all v ∈ Uw, v ∈ γ(O). It follows that γ(O) is open.

Lemma 8.13. γ is surjective.

Proof. This follows immediately from the fact that γ ‘hits’ each of the roots,
w1

0, . . . , w
n+1
0 , of K and γ is open.

Corollary 8.14. φ is refuted in M.

Proof. We stipulated that φ is refuted in the dynamic Kripke model K =
〈W,R,G, V1〉. Equivalently, letting M1 = 〈AK , hG, V1〉 be the dynamic alge-
braic model corresponding to K, φ is refuted in M1. By Lemma 8.11, Lemma
8.12, Lemma 8.13, and Lemma 8.10, we showed that γ : X →W is (i) continu-
ous, open and surjective; (ii) γ ◦ f = G ◦ γ; and (iii) γ has the M-property with

respect to µ. Thus by Lemma 7.5, the map Φ : 〈AK , hG〉 → 〈Mµ
X , h

|·|
F 〉 defined

by
Φ(S) = |γ−1(S)|

is a dynamic embedding. We now define the valuation V2 : PV →Mµ
X by:

V2(p) = Φ ◦ V1(p)

and we let M2 = 〈Mµ
X , h

|·|
F , V2〉. By Corollary 7.3, M2 6|= φ. In view of the

isomorphism Mµ
X
∼=M, we have shown that φ is refuted in M.

We have shown that for any formula φ /∈ S4C, φ is refuted in M. We
conclude the section by stating this completeness result more formally as follows:

Theorem 8.15. DMLM ⊆ S4C.

9 Completeness for a single measure model

In this section we prove a strengthening of the completeness result of the pre-
vious section, showing that there is a single dynamic measure model 〈M, h, V 〉
in which every non-theorem of S4C is refuted.

Definition 9.1. Denote by Mω the product M×M×M . . . This is a Boolean
algebra, where Boolean operations are defined component-wise:

(a1, a2, a3, . . . ) ∨ (b1, b2, b3, . . . ) = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3, . . . )
(a1, a2, a3, . . . ) ∧ (b1, b2, b3, . . . ) = (a1 ∧ b1, a2 ∧ b2, a3 ∧ b3, . . . )

−(a1, a2, a3, . . . ) = (−a1,−a2,−a3, . . . )
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Definition 9.2. We say (a1, a2, a3, . . . ) is an open element in Mω if ak is
open in M for each k ∈ N.

The collection of open elements inMω is closed under finite meets, arbitrary
joins and contains the top and bottom element (since operations in Mω are
componentwise). We define the operator Iω on Mω by:

Iω(a1, a2, a3, . . . ) = (Ia1, Ia2, Ia3, . . . )

Then Iω is an interior operator on Mω (the proof is the same as the proof of
Lemma 5.8). So the algebra Mω together with the interior operator Iω is a
topological Boolean algebra.

Lemma 9.3. There is a dynamic algebraic model M = 〈Mω, h, V 〉 such that
for any formula φ ∈ L�,©, the following are equivalent:

(i) S4C ` φ;

(ii) M |= φ.

Proof. Let 〈φk〉 be an enumeration of all non-theorems of S4C (there are only
countably many formulas, so only countably many non-theorems). By com-
pleteness of S4C for M, for each k ∈ N, there is a model Mk = 〈M, hk, Vk〉
such that Mk 6|= φk. We construct a model M = 〈Mω, h, V 〉, where h and V
are defined as follows. For any 〈ak〉k∈N = (a1, a2, a3, . . . ) ∈ Mω, and for any
propositional variable p:

h((a1, a2, a2, . . . )) = 〈hk(ak)〉k∈N

V (p) = 〈Vk(p)〉k∈N
(The fact that h is an O-operator follows from the fact that h is computed
componentwise according to the hk’s, and each hk is an O-operator).

We can now prove the lemma. The direction (i)⇒ (ii) follows from Propo-
sition 4.7. We show (ii) ⇒ (i), by proving the contrapositive. Suppose that
S4C 6|= φ. Then φ = φk for some k ∈ N. We claim that

πkV (φ) = Vk(φ)

where πk is the projection onto the kth coordinate. (Proof: By induction on
complexity of φ, and the fact that πk is a topological homomorphism.) In
particular, πkV (φk) = Vk(φk) 6= 1. So V (φk) 6= 1, and M 6|= φk.

Lemma 9.4. Mω is isomorphic to M.

Proof. We need to construct an isomorphism fromMω ontoM. Let (a1, a2, a3, . . . )
be an arbirary element in Mω. Then for each k ∈ N, we can choose a set
Ak ⊆ [0, 1] such that ak = |Ak| and 1 /∈ Ak. We define a sequence of points sk
in the real interval [0, 1] as follows:
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s0 = 0

s1 = 1/2

s2 = 3/4

In general, sk = 2k−1
2k

(k ≥ 1). We now define a sequence of intervals Ik having
the ak’s as endpoints:

I0 = [0,
1

2
)

I1 = [
1

2
,

3

4
)

I2 = [
3

4
,

7

8
)

and in general Ik = [sk, sk+1). Our idea is to map each set Ak into the interval
Ik. We do this by letting Bk = lk Ak + sk where lk is the length of Ik. Clearly
Bk ⊆ Ik and Bk∩Bj = ∅ for all k 6= j. We can now define the map h :Mω →M
by:

h(a1, a2, a3, . . . ) = |
⋃
k∈N

Bk |

where Bk is defined as above. The reader can now verify that h is an isomor-
phism.

Corollary 9.5. There is a dynamic measure model M = 〈M, h, V 〉 such that
for any formula φ ∈ L�,©, the following are equivalent:

(i) S4C ` φ;

(ii) M |= φ.

Proof. Immediate from Lemma 9.3 and Lemma 9.4.

I would like to thank Grigori Mints and Dana Scott for valuable comments,
and Sergei Slavnov for his pioneering work in this area.
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