Knowledge, Time, and Paradox:
Introducing Sequential Epistemic Logic*
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Abstract Epistemic logic in the tradition of Hintikka provides, as one of its many
applications, a toolkit for the precise analysis of certain epistemological problems.
In recent years, dynamic epistemic logic has expanded this toolkit. Dynamic epis-
temic logic has been used in analyses of well-known epistemic “paradoxes”, such
as the Paradox of the Surprise Examination and Fitch’s Paradox of Knowability, and
related epistemic phenomena, such as what Hintikka called the “anti-performatory
effect” of Moorean announcements. In this paper, we explore a variation on basic
dynamic epistemic logic—what we call sequential epistemic logic—and argue that
it allows more faithful and fine-grained analyses of those epistemological topics.
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1 Introduction

Epistemic logic in the tradition of Hintikka (1962) has found myriad applications,
spanning philosophy, computer science, game theory, and linguistics, in addition to
developing a set of topics and agenda of its own (see the recent Handbook of Epis-
temic Logic, van Ditmarsch et al 2015). While enjoying this wide-ranging success,
epistemic logic has not forgotten its philosophical roots. To the contrary, its appli-
cation to problems in epistemology has undergone a kind of renaissance in recent
years (for surveys and references, see Egré 2011 and Holliday Forthcoming).
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Another important development in recent epistemic logic has been the rise of
dynamic epistemic logic (for a survey, see Pacuit 2013, and for textbooks, see van
Ditmarsch et al 2008 and van Benthem 2011). This dynamic turn has led to diverse
directions of research, yet it has also overlapped with the renaissance of epistemo-
logical applications of epistemic logic. Dynamic epistemic logic has been used in
analyses of well-known epistemic “paradoxes”, such as the Paradox of the Surprise
Examination (Gerbrandy, 1999, 2007) and Fitch’s Paradox of Knowability (van
Benthem, 2004; Balbiani et al, 2008; van Ditmarsch et al, 2011). In addition, it has
been used to analyze related epistemic phenomena, such as what Hintikka (1962,
§4.17) called the “anti-performatory effect” of Moorean announcements (van Dit-
marsch and Kooi, 2006; Holliday and Icard, 2010; Holliday et al, 2013).

In this paper, we will explore a variation on basic dynamic epistemic logic—
what we call sequential epistemic logic—and argue that it allows more faithful and
fine-grained analyses of the epistemological topics just mentioned. The basic idea of
sequential epistemic logic (SEL) is that it allows us to reason about the full temporal
sequence of agents’ epistemic states, including agents’ changing knowledge of their
own and others’ past and future epistemic states, in terms of the same kinds of
epistemic transformations as studied in dynamic epistemic logic.?

The idea of adding some kind of temporality to dynamic epistemic logic is
not new. Motivations for such a move are widely acknowledged in the literature
and worked out in different ways (see, e.g., Hoshi 2008, van Benthem et al 2009,
Gierasimczuk 2010, van Benthem 2011, Ch. 11, references therein, and references
at the end of §3.1 and §3.2 below). The novelty of sequential epistemic logic is in
the specific way this move is carried out, which is motivated by the specific episte-
mological applications at hand. For other applications, other ways of temporalizing
dynamic epistemic logic will no doubt be more appropriate.

The plan for our introduction to sequential epistemic logic is as follows.

In §2, we briefly review basic dynamic epistemic logic, in particular, what has
come to be called Public Announcement Logic (PAL). This name is unfortunate
for our purposes, insofar as it suggests that the framework should be of interest to
operators of loudspeakers, but perhaps not philosophers. To the contrary, the basic
and familiar idea of the framework—information acquisition as the elimination of
possibilities—is of interest in many disciplines, including philosophy. A notable
development of the idea in philosophy is the picture of inquiry in Stalnaker 1984.

In §3, we review the standard analyses of Fitch’s paradox and the surprise exam
paradox based on PAL. Although these analyses are a good start, we point out ways
in which a richer framework is needed to capture key ideas raised by the paradoxes.

In §4, we propose a candidate for such a richer framework. As an example of the
general idea of SEL, we introduce what could be called (aligning with the accepted
nomenclature) Sequential Public Announcement Logic (SPAL).

In §5, we turn to applications of SPAL. First, we show how to enlarge the stan-
dard PAL taxonomy of successful, unsuccessful, and self-refuting sentences with
useful new distinctions expressible with SPAL, such as a distinction between assim-

2 For a different variation on dynamic epistemic logic in a similar spirit, see Cohen 2015a,b.
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ilable and unassimilable sentences (applied in Holliday 2016a,b), and a distinction
between ascertainable and unascertainable sentences. We then show that the sec-
ond distinction is key to a more faithful analysis of Fitch’s paradox, while the first
distinction is key to a more faithful analysis of the surprise exam paradox.

2 Basic Dynamic Epistemic Logic

In this section, we review the language, semantics, and some basic results about the
dynamic epistemic logic PAL (Plaza, 1989; Gerbrandy and Groeneveld, 1997).

Let At be a countably infinite set of atomic formulas and Agt a nonempty count-
able set of agent symbols. The language of PAL, .Zp41, is given by the following
grammar:

pu=pl-0|(eNQ) | K| ()0,

where p € At, a € Agt. £ is the fragment without formulas of the form (!¢)y,
i.e., the language of epistemic logic. As usual, K, is agent a’s knowledge operator.

The appropriate reading of formulas of the form (!¢@)y depends on whether we
are in the single-agent case where |Agt| = 1 or the multi-agent case where |Agt| > 1.
In the single-agent case, we read (!@)y as “@ is true, and if the agent updates her
epistemic state with the proposition which ¢ expressed before the update, then v
will be true.” In the multi-agent case, we read (!@)y as “@ is true, and if all agents
update their epistemic states with the proposition which ¢ expressed before the
update—with it being common knowledge that all agents perform this update—then
v will be true.” The notion of update will be made precise shortly.

Traditionally (!¢)y is read as something like “¢ is true, and if @ is publicly
announced, then y will be true.” In the multi-agent case, an act of public announce-
ment may be one typical way of triggering the relevant kind of update with the rel-
evant common knowledge. But according to the view adopted in this paper, the real
subject matter of PAL is the information updates themselves. This is especially clear
in the single-agent case, where we are reasoning about any update of the agent’s
epistemic state, regardless of whether it is triggered by an utterance, experiment,
perception, etc. In this sense, PAL is a logic of pure information update, and the
term ‘public announcement’ suggests that PAL has a narrower significance than it
in fact has. (The term ‘Information Update Logic’ would be preferable in the single-
agent case, and the term ‘Common Information Update Logic’ might be preferable
in the multi-agent case. But alas it seems too late to change tradition now.)

We interpret Zpy; in epistemic models M = (W,{R4}acagt,V) where W is a
nonempty set, each R, is a binary relation on W, and V: At — @(W). A pointed
model is a pair of a model .# = (W,{Ry}4cagt,V) andaw € W.

For terminology: W is the set of worlds; subsets of W are propositions; R, is
agent a’s epistemic accessibility relation; and R,(w) = {v € W | wR,v} is agent a’s
epistemic state at w in .. We say that agent a knows a proposition Q C W at a
world w iff R,(w) C Q. We will assume that each R, is at least reflexive.
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We evaluate formulas of .Zp4;, at pointed models. The clauses for Z%, are:

o /M ,wEpiffweV(p),forpe At;

o M ,wE—@iff 4 ,wF o,

o M wEQANYIift # ,wE @and Z ,wE y;
o M ,wEK,piffforallveR,(w): 4 ,vE .

We call [@]” = {we W |.#,wk @} the proposition expressed by @ in .# . The
clause for K, can be reformulated as: [K, @]/ = {w € W | R,(w) C [@]“}.

There are two well-known semantics for the update formulas of Zpa;: world-
elimination semantics, where “updating” with a formula ¢ means deleting all states
where @ was false; and link-cutting semantics, where “updating” with a formula
¢ means cutting epistemic accessibility links between states that differed on their
truth values for ¢. These semantics are equivalent for the language -Zpar, but not
necessarily for more expressive languages. The world-elimination semantics is more
common, whereas the link-cutting semantics will be better for our purposes in §4.

For world-elimination, given a model .# = (W,{R.}scaqt,V) and proposition
Q C W, we define the update of .#Z by Q, .#9 = (Wi, {Ra10}acAgt, Vo), bY:

o Wio=0Q; Ry is the restriction of R, to Wyp;  Vip(p) =V (p) "Wjg.
Then the semantic clause for update formulas is:

o M ,wE(\Q)yiff #,wE ¢ and M o1 W E VY,

where [@]“ is the proposition expressed by ¢ in . as above. For cleaner notation,
we can define .#Zy = ./ @] » but we will use the proposition notation.

Finally, validity is defined as usual: an .Zps; formula ¢ is valid (notation: Fpsz, @)
iff for every pointed epistemic model .# ,w, we have .Z ,w F ¢.

To understand what updating the initial epistemic model .# to the new . o]
means conceptually, let us begin with the case where there is only one agent.

The equation W0 = [@]“ shows that the information the agent receives is
the proposition which ¢ expressed before the update. We stress before the update,
because after the update ¢ may express a different proposition, i.e., we may have

[o] "1 £ [,

as in Example 1 below. The reason is that the knowledge operator K introduces
indexicality: the proposition expressed by a formula containing K depends on the
agent’s current epistemic state (the relation R), and what counts as the “current
epistemic state” may change as a result of an update (as we move from .# to .#).
The English sentence ‘Smith does not know that George Washington was the first
president of the U.S.” carries this kind of indexicality. Today (an utterance of) it may
express a true proposition, while tomorrow a false proposition. (Here we are assum-
ing the so-called eternalist view of propositions expressed by tensed sentences.)

By contrast, the definition of Vo(p) = V(p) N W}o shows that we are assuming
our atomic formulas are non-indexical. The truth value of an atomic formula at a
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world cannot change as the agent’s epistemic state changes from .# to .#)¢. If
we think of updates as occurring in time, then the atomic formulas correspond to
Quine’s (1960, §40) eternal sentences, whose truth values do not change with time.
By contrast, formulas of the form K¢ would correspond to present tense knowl-
edge attributions. In Holliday et al 2013, we used the mnemonic PKEA—for present
knowledge eternal atoms—to remember how to think about formulas of PAL.

This different treatment of atomic formulas and epistemic formulas has an im-
portant logical effect in PAL. Observe that the formula (p Ag) — (!p)q is valid, i.e.,
if p and q are true, then after update with p, g is still true. But now substitute =K p
for g to obtain (p A =Kp) — (!p)—Kp. This latter formula is not valid. (Quite the
contrary: p — (!p)Kp is valid.) Thus, the set of valid PAL formulas is not closed
under uniform substitution. Put differently, say that a formula is schematically valid
iff all of its uniform substitution instances are valid. Then the set of schematically
valid PAL formulas is a proper subset of the set of valid PAL formulas. All of the
following formulas are examples (from Holliday et al 2012) of formulas that are
valid but not schematically valid, where [!@]y := —=(l@)—y:

['plp Kup — [!p]Kap

[!PIKq Kap = ['p](p — Kup)

[!p] (p — Kup) Ka(p — q) — ({!g)Kar — (!p)Kar)
['p/\_‘ ap] (p/\_‘ ap) (<!p>Kar/\<!q>Kar) - <!p\/Q>Kar~

That these formulas are valid but not schematically valid is cautionary: it shows
that general principles about information dynamics that one might have intuitively
accepted are prone to falsification when we plug in epistemic formulas (see Holliday
et al 2013 for discussion). We will return to this point in Example 1 below.

The set of valid PAL formulas can be axiomatized as follows (cf. Plaza 1989). It
is the smallest set L C .%p4;, that contains all uniform substitution instances of

e classical propositional tautologies
o K,(p—q) — (Kyp — Kuq) and Kyp — p
o (Ip)=q < (pA—(p)g) and (!p)(g A1) < ({!p)g A (!p)r)
o (Ip)Kag > (P NKa(p — (!P)q)),
for all a € Agt, and contains
o {lo)p < (9Ap)
for all ¢ € Zpar and p € At, while being closed in the following ways:
o if p €L, then K, € L

o if y > x €L, then ¢[y/p] <> ¢[x/p] €L.

The set of schematically valid PAL formulas (for Agt infinite) was shown to be
decidable in Holliday et al 2011, 2013 and was finitely axiomatized in Holliday et al
2012 with a system of Uniform Public Announcement Logic (UPAL). UPAL was
also shown to axiomatize the set of validities for an alternative semantics. In that se-
mantics, atomic formulas are treated as genuine propositional variables, standing in
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for arbitrary formulas; thus, the truth value of an atomic formula—Ilike an epistemic
formula—can change across the transitions associated with update operators.

Another important point to make about PAL is that the defined notion of updating
with a proposition Q is a strong notion. Not only does the agent come to know
the proposition, so Ra[Q(w) C Q, but also she comes to know that she knows the
proposition Q, so R,jo(w) C {v € W | Ry1o(v) € Q}, and so on up to every level. In
light of the arguments that an agent can know a proposition without knowing that
she knows it (see, e.g., Williamson 2000), there is reason to study a weaker notion of
update, where an agent could come to know P without necessarily coming to know
that she knows P; but we will not study such a weaker notion here.

Finally, let us suppose there is more than one agent. Then as we go from .Z to
M0, not only does each agent come to know the proposition Q, and that she knows
that she knows the proposition Q, and so on up to every level, but also each agent
comes to know of each other agent that she knows Q up to every level, that each
other agent knows that each other agent knows Q up to every level, and so on. In
short, the proposition Q becomes common knowledge in the sense of Lewis 1969.

Let us now see how the PAL semantics handles a well-known example.

Example 1 (The Moore Formula). In Section 4.17 of Knowledge and Belief, Hin-
tikka (1962) discusses what he calls the “Analogue to Moore’s paradox for the sec-
ond person.” Hintikka asks us to consider the sentence ‘p but you do now know that
p’, which he labels as sentence (52). Hintikka makes several observations about an-
nouncements of (52), including the following: “If you know that I am well-informed
and if [ address the words (52) to you, these words have a curious effect which may
perhaps be called anti-performatory. You may come to know that what I say was
true, but saying it in so many words has the effect of making what is being said
false” (pp. 68-69). Or perhaps more carefully: it has the effect that a subsequent
announcements using the same words would be false. Although Hintikka’s static
epistemic logic could not capture this point, the framework of PAL can capture it.

First, formalize (52) as p A—K p. Then observe that whenever p A =K p is true at a
world w in a model .Z, i.e., # ,wF p A=K p, then “announcing” p A =K p results in
a model ‘%[[[p/\ﬂl(p}]/// in which p is known, i.e., '//lr[[pAﬁKp]]‘” ,wF Kp, which means
that p A —Kp becomes false, i.e., My, g g W F -(pA—Kp).

For concreteness, consider a model .# with just two worlds w and v, the ac-
cessibility relation R as the universal relation, and p true only at w. Hence .Z,w F
p A—Kp. Then the updated model .7, MpA—Kp] contains just the world w with a
reflexive accessibility relation, and p is still true at w, so .Z, HpA—Kp]# W FKp.

Since the observation holds for any model .# such that .#Z,w E p A =Kp, the
principle (p A —=Kp) — (!p A—=Kp)—(p A—=Kp) is a valid principle of PAL. This
supports Hintikka’s point about the “anti-performatory” effect of announcing (52).
But the support is only partial. Hintikka presumably intended ‘p’ in (52) to stand
in for any sentence; but if so, then (52) is not always anti-performatory. As shown
by the “Puzzle of the Gifts” in Holliday et al 2013, there are complex epistemic
formulas ¢ such that after the announcement of “¢@ but you do not know that ¢”, it

3 We will return to Hintikka’s point that “You may come to know that what I say was true” in §5.
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remains true that ¢ but the agent does not know that ¢, so the announcement was
not anti-performatory. In the context of PAL, this means that, quite surprisingly,
(pAN=Kp) — (!p A=Kp)—(p A —=Kp) is not a schematically valid principle. This a
good illustration of how we can use dynamic epistemic logic not just to formalize
our preexisting intuitions, but to discover surprising counterexamples.

The final task in our review of PAL is to explain the link-cutting semantics men-
tioned above, which appears in van Benthem and Liu 2007 (cf. van Linder et al 1994;
Herzig et al 2000). For this semantics, given a model .# = (W,{R,}4cagt,V) and
proposition Q C W, we define the update of .# by Q, .#|p = (W,{Ry|p}achgt:V)>
by:

® VR, ou iff both vR,u and [v € Q iff u € Q].

Thus, we cut all epistemic accessibility links between worlds in Q and worlds not in
0, but we do not throw away the latter worlds from our new model, as we did with
world-elimination. Now the semantic clause for update formulas is:

o M, wE(lQ)yiff A ,wE ¢ and A g0, WwF Y.

We mentioned above that world-elimination and link-cutting are equivalent for
Zpar. In particular, if we let =, be the satisfaction relation for world-elimination
semantics and . for the link-cutting semantics, then it is easy to check that for any
pointed epistemic model .Z,w and ¢ € Lpas: M ,wE, @ iff 4 ,wE. @.* Thus, the
set of valid formulas is the same for world-elimination and link-cutting.

An important point about link-cutting is that the models .#|p and .Zy\ o are the
same. Link-cutting represents an event that truly answers the question of whether
or not Q from .4 to .#)p, or equivalently, from .# to .y . At each world w in
Q, all agents come to know Q, i.e., Ra‘Q(w) C Q. But at each world v not in Q, all
agents come to know not Q, i.e., Ry o(v) € W\ Q. Of course, since worlds in Q and
worlds in W \ 0O become disconnected in ///|Q, whatever agents come to know at a
world v € W\ Q is irrelevant to the truth values of .£ps; formulas at a world w € Q
in .#|p—hence the previous paragraph. But when we move to a more expressive
language in §4, what happens at worlds in W \ Q will no longer be irrelevant.

3 Paradoxes and Problems

In this section, we explain how basic dynamic epistemic logic has been used to
analyze two well-known “epistemic paradoxes”: Fitch’s Paradox of Knowability
(§3.1) and the Paradox of the Surprise Examination (§3.2). We highlight the valuable
ideas in these analyses, as well as ways in which these analyses could be improved.

4 An analogous statement is true for a third semantics for PAL based on arrow-elimination (as in
Gerbrandy and Groeneveld 1997 and Kooi 2007), where the new relation R, is defined from the
original relation R, by: VR, ou iff both vR,u and u € Q. Note, however, that non-trivial arrow-
elimination will turn the reflexive R, into a non-reflexive R,1q, so the updated model will not be an
epistemic model. For this reason, it is used to model the updating of belief rather than knowledge.
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3.1 Knowability

What is known as Fitch’s paradox originates in the following statement of Fitch
(1963): “THEOREM 5. If there is some true proposition which nobody knows (or
has known or will know) to be true, then there is a true proposition which nobody
can know to be true” (p. 139). Contrapositively: if every true proposition is such that
somebody can know it to be true, then every true proposition is such that somebody
knows, has known, or will know it to be true—a surprising result!

The argument is often formalized in modal logic as follows. Consider a proposi-
tional modal language .Z (<, K) with two modal operators < and K. The principle
that every true proposition can be known is formalized by the schema:

o — OKo. (1)
The principle that every truth is sometime known is formalized by the schema:
v — Ky. )

Consider a set L of .2 (<, K) formulas such that L contains all substitution instances
of classical propositional tautologies and such that for all formulas o and 3:

(i) K(anB)— (KaAKB) €L
(i) Ko —» a €L;
(iii) if ~a € L then =-<Ca € L.

Give a set I' U {¢} of formulas, let I" i, ¢ iff ¢ belongs to the smallest set
XY D I' UL that is closed under modus ponens: if & € X and @ — ff € X, then § € X.
Then it can be shown that for every formula y, there is a formula ¢ such that:

{¢ = OKo} L v — Ky, (3)

Take ¢ := yw A =K. Using properties (i) and (ii) of L, it is easy to see that
-K(y A =Ky) € L, whence ~OK(y A —Ky) € L by (iii). Then classical propo-
sitional reasoning give us (3). Thus, if the correct logic of & and K is at least as
strong as k., and if every instance of (1) is true, then so is every instance of (2).

What are we to make of this formal argument? Following Fitch, let us interpret
K¢ as meaning that someone knows, has known, or will know ¢. Then the idea that
all instances of (2) are true seems absurd, so what went wrong?

Given our intended interpretation of K¢, property (i) of L. seems unimpeachable.
So does property (ii)—provided we think of o as a sentence such that if it expresses
a true (resp. false) propositions at one time, then it does so at all times. Note that this
is not how formulas are typically understood in temporal logics with past and future
operators P and F. If we take the italic K¢ to mean that someone knows ¢, PK @
to mean that someone knew ¢, and F K¢ to mean that someone will know ¢, then
we could think of our roman K¢ as K¢ V PK¢ V FK¢. Then we would not want
to add to our temporal logic the principle that Kp — p, or informally, “if p is ever
known to express a truth, then p expresses a truth now.” For further discussion of
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this point, see Burgess 2009.> So let us assume that all our sentences are such that if
they express a true (resp. false) proposition at one time, they do so at all times. Note
that if a and 8 have this property, then so do all Boolean combinations of ¢ and f3,
and so does Ka, given the interpretation of K¢ in the previous paragraph.

What about ¢? Some commentators on Fitch have been tempted to read the &
as a kind of metaphysical ““it could have been the case that...”. Then the compound
<OK @ would mean that it could have been the case that someone at some time knew
¢. An arguably more interesting reading is the one suggested by Fitch’s original
language: OK¢@ means that someone can sometime know ¢. To say that someone
can know @ is not the same as saying that it could have been that someone knew
¢. An entailment from ‘can’ to ‘could have been’ is plausible, but the converse is
not. For ‘can’ takes into account, at least to some extent, constraints imposed by
contingent features of the actual world. It is debatable whether the notion of can
know is factorable into some kind of can modality < and a know modality K. As
an approximation, we might take <@ to mean that (at some time) it can be brought
about that ¢@; so OGK¢ would mean that (at some time) it can be brought about that
someone (at some time) knows ¢. Under this reading of <, property (iii) of L above
seems uncontroversial: one cannot bring it about that ¢ if =« is a logical truth.

To block the derivation that all instances of (2) are true, the obvious move is to
deny that all instances of (1) are true. Not all truths can be known. The principle
that all truths can be known is implied by certain anti-realist or verificationist views
about truth. So much the worse for these views, one might say.

Rather than dwelling on Fitch’s proof as a refutation (or not) of certain anti-realist
views, we can take Fitch’s proof as inspiration for the study of different notions of
knowability and the associated limits of knowledge (cf. Williamson 2000, Ch. 12).

This is where dynamic epistemic logic enters the story, with the important no-
tion of knowability proposed by van Benthem (2004). (For simplicity, let us imag-
ine there is just one agent, and we are asking what is knowable for that agent.) In
essence, van Benthem’s idea is to read G ¢ as “there is a possible change from the
agent’s current epistemic state to a new epistemic state such that if the change oc-
curs, then @ is true.” So we read the compound K¢ as “there is a possible change
from the agent’s current epistemic state to a new epistemic state such that if the
change occurs, then the agent knows ¢.” Thus, van Benthem construes knowability
as what one may come to know from one’s current epistemic state—not from some
counterfactual epistemic state that one could have had but doesn’t.

Technically, van Benthem’s proposal can be seen as extending .Zp4; to a lan-
guage Zapar, With an operator (!), interpreting (!)¢ to mean that there is a formula
v of ZLpar (or equivalently, of Z%; ) such that updating the agent’s current epistemic
state with y results in a new epistemic state relative to which ¢ is true:

o M,wE (NQiff Iy € Lpar: Mg, wF Q.

The logic given by PAL semantics plus this semantics for (!) is the Arbitrary Public
Announcement Logic (APAL) of Balbiani et al 2008 (cf. van Ditmarsch et al 2011).

3 Also see Proietti and Sandu 2010 and Wansing 2015 on the role of time in knowability principles.
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So far, so good. A difficulty arises, however, in trying to apply this formalism to
express the idea that if a proposition is true, then it is knowable. It is suggested in
the literature that this is expressed by ¢ — (1)K¢ in APAL. This, however, is not
quite right. The problem is similar to the one pointed out by Lewis in the following:

I'say (1) pigs fly; (2) what I just said had fewer than three syllables (true); (3) what I just said
had fewer than four syllables (false). So ‘less than three’ does not imply ‘less than four’?
No! The context switched midway, the semantic value of the context-dependent phrase
‘what I just said’ switched with it. (Lewis, 1996, p. 564)

Here is the similarity: since the meaning of the K operator in APAL involves
indexicality—K ¢ means that in the agent’s current epistemic state, she knows ¢—
and since the (!) operator in APAL shifts the index for that indexical—it shifts what
the current epistemic state is—the crucial formula

(pA—=Kp) = ()K(pA—=Kp)

expresses, according to the APAL interpretation: “if p is true but in the agent’s
current epistemic state, she doesn’t know p, then after some change in the agent’s
epistemic state, the agent knows that [p is true but in the agent’s current epistemic
state, she doesn’t know p].” But the second occurrence of ‘current epistemic state’
refers to something different than the first. The context switched midway.

Thus, the “knowability principle” ¢ — (!)K¢ of APAL is not capturing the idea
that if a proposition is true, then one can come to know that proposition; instead, it is
capturing the idea that if a proposition is true, one can come to know some perhaps
different proposition that is expressed by the same indexical sentence in a different
context. That may be interesting, but it is not the central knowability principle.

Fortunately, there is a solution. Roughly, we need an operator Y such that when
we interpret @ — ()KY ¢, Y ¢ will express relative to the new epistemic state in-
duced by (!) the same proposition that ¢ expressed relative to the old epistemic state
(now thinking in terms of link-cutting update, where we do not eliminate worlds—
for eliminating worlds could make it impossible to express the same proposition).
The choice of the letter Y is no accident—it suggests the yesterday operator of tem-
poral logic. Extensions of dynamic epistemic logic with devices similar to a yester-
day operator are proposed in Hoshi and Yap 2009; Renne et al 2009; Sack 2010; Yap
2011; Renne et al 2016. In §4, we will implement the idea of a yesterday operator
in an especially simple way within the framework of sequential epistemic logic.

What the discussion of this section shows is the need for the past in dynamic
epistemic logic. In the next section, we shall see the need for the future.

3.2 Surprise

Discussions of the Surprise Exam Paradox, also known as the Prediction Paradox,
date from at least the 1940s (see Sorensen 1988, §7). Since then, a number of vari-
ants of the paradox have appeared, designed to block purported solutions to the
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original paradox. In this paper, it will best suit our purposes to consider the variant
that Sorensen (1984) calls the designated student paradox:

Consider the designated student paradox. Here, only one examination is to be given to one
of five students: Art, Bob, Carl, Don, Eric. The teacher lines them up alphabetically so that
Eric can see the backs of each of the four students in front of him, Don can see the backs
of the three students in front of him (but not Eric’s since Eric stands behind him), and so
on. The students are then shown four silver stars and one gold star. One star is put on the
back of each student. The teacher then announces that the gold star is on the back of the
designated student. He informs them that the designated student must take the examination.
The examination is unexpected in the sense that the designated student will not know he is
the designated student until after the students break formation. One of the students objects
that the examination is impossible. “We all know that Eric is not the designated student
since, if he were, he would see four silver stars in front of him and deduce that he must
have had the gold star on his back. But then he would know that he was the designated
student. The designated student cannot know he is the designated student; contradiction.
We all know that Don cannot be the designated student since, if he were, he would see
three silver stars in front of him, and since he knows by the previous deduction that Eric
has the remaining silver star, he would be able to deduce that he is the designated student.
In a similar manner, Carl, Don, and Art can be eliminated. Therefore, the examination is
impossible.” The teacher smiles, has them break formation, and Carl is surprised to learn
that he has the gold star, and so is the designated student, and so must take the examination.
(Sorensen, 1984, p. 357)

What went wrong, then, with the student’s reasoning?

In Holliday 2016b, I argue for an answer to this question using an analysis with
static multi-agent epistemic logic. Here I will review the analysis with dynamic epis-
temic logic due to Gerbrandy (2007). Gerbrandy focuses on the original version of
the surprise exam paradox, where the five students Art, Bob, Carl, Don, and Eric are
replaced by a single student who could have an exam on Monday, Tuesday, Wednes-
day, Thursday, or Friday. But if Gerbrandy’s analysis gets to the heart of the original
paradox, then a similar analysis should apply to the designated student paradox (and
indeed, Gerbrandy (2007, p. 26) refers to the designated student paradox).

Let us apply to the designated student paradox the analogue of the analysis of the
surprise exam paradox in Section 4 of Gerbrandy 2007, which uses the semantics
of PAL.® For a semantic analysis, the first step is to draw an appropriate epistemic
model representing what the students know just after “One star is put on the back of
each student” in Sorensen’s description above, but before the teacher announces that
the student with the gold star will not know that he or she has it until the students
break formation. For simplicity, let us consider just three students: 1, 2, and 3.

A natural candidate for the model is the .# shown on the left of Figure 1. Each
world is identified with the set of atomic formulas true at that world. The atomic
formula g; means that student i has the gold star on his or her back. Where R; is the
epistemic accessibility relation for student i, we assume that for each world w, we
have wR;w; but to reduce clutter we do not draw these reflexive loops in the diagram.
Only the relations R; and R, relate distinct worlds, representing the uncertainty of
students 1 and 2, as shown in the diagram. Note that in this model, it is common

6 By contrast, the analysis in Section 3 of Gerbrandy 2007 involves syntactic derivations, as does
the analysis in Holliday 2016b.
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knowledge that someone has the gold star. Although Sorensen’s description does
not say explicitly that the students know of each other that they all saw the silver
stars and one gold star (it just says “The students are then shown four silver stars and
one gold star”), let us assume that this fact and the fact that the teacher distributed
the stars on the students’ backs are common knowledge. Then the model says that
whichever world is actual, student 3 knows who has the gold star, which seems right.
In no case does student 1 know who has the gold star, which also seems right. And
it is only if the gold star is on the back of student 1 that student 2 knows who has
the gold star; otherwise 2 is uncertain whether he has it or 3 has it, which also seems
right. Finally, we assume that all of this is common knowledge among the students.

{g1} {e1}

1 1 1

, 183} {g2}

Fig. 1 Models for the designated student paradox.

The next step in the dynamic analysis is to formalize the teacher’s announcement
that the student with the gold star will not know that he or she has it until after the
students break formation. A first try would be the formula

S:= (g1 N—Ki181)V (g2 N—K282) V (g3 N —K383).

Before assessing whether § is a faithful formalization, let us see what happens to
our initial model when S is “announced.” Observe that S is true at {g; } and {g,} but
false at {g3} in .# in Figure 1, since g3 A K3g3 is true at {g3}. Thus, the result of
announcing S is the model .7, s~ On the right of Figure 1.

Now note what has happened. While S was true at {g>} in ./, that same S has
become false at {g>} in .#,g).. Thus, if {g>} is the actual world, then S initially
expressed a true proposition, but after the announcement of S, S expresses a false
proposition; and whichever is the actual world, after the announcement of S, stu-
dent 1 does not know the proposition expressed by S. This, Gerbrandy’s analysis
suggests, is the key to solving the paradox. What he says about the surprise exam
paradox for one student, Marilyn, and three days, Wednesday, Thursday, and Friday,
can be applied to the designated student paradox with three students, 1, 2, and 3:

When Marilyn learns that S is true, she eliminates the world in which S is false from
her information state. The state that results is {swe,sth }. Now, if the exam is actually on
Thursday, it is not a surprise anymore: {Swe, Sth },Sth = —S. However, if the exam is given
on Wednesday, it will remain to be a surprise. In either case, the sentence is not successful:
Marilyn does not know whether the exam will be a surprise or not, even if she just learned
that it would be.
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If S correctly paraphrases the teacher’s announcement, then Marilyn’s reasoning is cut short
after having excluded the last day as the day of the exam. She continues her argument
by reasoning that the exam cannot be on Thursday either, because that would contradict
the claim of the teacher that the exam comes as a surprise. To be sure, she is correct in
concluding that, now, after the announcement, it will not be a surprise if the exam is on
Thursday, and she is correct in that the teacher said that it would be, but she is not correct
in seeing a contradiction between these two claims. If the exam is on Thursday, then S is
true before the teacher makes his announcement, but it becomes false after she learns of its
truth. This may be confusing, but it is not paradoxical. (Gerbrandy, 2007, pp. 26-27)

Similarly, the analysis of the designated student paradox would be that if the gold
star is on student 2’s back, then the sentence S is true before the teacher makes
the announcement, but it becomes false after the announcement. The mistake of the
student’s reasoning, then, is to assume that S is still true.

As elegantly simple as this analysis is, unfortunately there is a problem. The
problem is that we have not correctly formalized the teacher’s announcement. The
teacher does not announce a sentence like “None of you now knows that you have
the gold star on your back.” That would indeed be a sentence such that after it is truly
announced, it would express a false proposition, in the case where student 2 has the
gold star. But that is not even in the ballpark of the teacher’s announcement. The
teacher announces something like: “None of you will know that you have the gold
star until you break formation” which entails that they will not know even after that
very announcement. (Similarly in the original paradox, the teacher says, “You will
not know until the time of the exam which day the exam is on,” which entails that the
student will not know even after that very announcement.) Indeed, the teacher could
redundantly add: “None of you will know that you have the gold star, even after
this very announcement, until you break formation.” Gerbrandy (2007, Section 5)
recognizes that the formalization of the teacher’s announcement with his sentence
S does not capture the even after this announcement aspect; but also there seems to
be no one way to capture exactly that content in the language of PAL.

We shall see that in the framework of sequential epistemic logic, we can formal-
ize an announcement such as “None of you will know that you have the gold star
even after this announcement.” We will do so using a next time operator X, such that
announcing X ¢ amounts to announcing “after this announcement, ¢ will be true.”
A similar approach is sketched in the lecture slides of Baltag and Smets (2010)
(see Marcoci 2010 for discussion), who analyze the surprise exam paradox using
plausibility models for conditional belief, adding a next time operator to capture the
teacher’s announcement.” (As we stress in §6, the idea of sequential epistemic logic
can be implemented with types of models and model transformations other than the
epistemic models and updates of PAL—including belief revision models.)

Our analysis of the paradox in §5 will differ from the analysis above. While the
quoted analysis from Gerbrandy supports the elimination of an exam on the last
day, given the teacher’s announcement, the analysis in §5 will not support the con-
clusion that student 2 can eliminate the possibility of a gold star on student 3, given

7 Also cf. van Ditmarsch et al 2013, which uses an existential branching next-time operator,
parametrized by epistemic actions, in connecting dynamic epistemic and epistemic temporal logic.
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the teacher’s announcement. The reason is that while the analysis above treats the
teacher’s announcement as an unsuccessful announcement, our analysis will treat
the teacher’s announcement as what we call an unassimilable announcement.

4 Sequential Epistemic Logic

In this section, we illustrate the general idea of sequential epistemic logic by intro-
ducing a sequential epistemic analogue of APAL, which we will call SPAL.

Let At and Agt be the same sets we used in defining Zp4;. The language of
SPAL, Zspar, is generated by the following grammar:

Q:=pl-o|(oNQ)|X@|YQ|Fo|Po|K,Q
(@o|(lo,....,000 | (o] ()e,

where p € At, a € Agt, and n € N. On the first line, we have familiar operators
from propositional temporal logic, namely next time X, previous time Y, future F,
and past P, as well as the usual knowledge operator K, for agent a. On the second
line, the operator (@) is what we call a descriptive update operator, explained in
§4.1, while the operator (!¢, ..., ®,) is what we call a hypothetical update operator,
explained in §4.2. The operators () and (!,,) are the “arbitrary” versions of (¢) and
(l@1,...,@,), respectively, which will also be explained in §5§4.1-4.2. It is important
to note that we will call X, F, (@), and () the futuristic operators.

Other boolean connectives and temporal operators (H, G) are defined as usual.
It should be stressed that the reader may plug in a more expressive temporal base
language, e.g., including since and until operators, hybrid tense logic operators, etc.
The interpretation of the update operators in the second line above, as described in
§64.1-4.2, will remain the same regardless of the temporal base.

Before giving the official semantics of the update operators, we can already note
that syntactically we will consider PAL formulas of the form (!¢;)y as SPAL for-
mulas of the form (!¢y,..., @)y with n = 1, so we will take £p4; to be a fragment
of Zspar. We will also consider APAL formulas of the form (!) y as SPAL formulas
of the form (!)y, so we will also take Zpa;. to be a fragment of Zspay..

A base model is a pair M = (W,V) where W is a nonempty set and V: At —
£(W). An alternative setup takes V: At — @(W x N), allowing the truth values of
atomic formulas to vary over time, as in the semantics of UPAL (Uniform Public
Announcement Logic) mentioned in §2. But in this paper, we will follow traditional
PAL in treating atomic formulas as eternal sentences.

A sequential epistemic model is a pair . = (M, ) where M = (W, V) is a base
model and o is an @-sequence (Ry, R, Ry, ... ) where for eachr € N, R, is a function
assigning to each a € Agt a binary relation R on W. Intuitively:

e R{ is agent a’s epistemic accessibility relation at time .
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An alternative setup takes R{ to be a binary relation on W x N, allowing an agent
to be uncertain at a time ¢ about what time it is. But in this paper, we will assume
synchronicity: agents know what time it is (cf. van Benthem et al 2009).

The truth clauses for .Zsps; formulas without update operators are standard (the
reason for displaying ¢ on the left of the turnstile will become clear in §§4.1-4.2):

M,w,t,c F piff we V(p);

M,w,t,c F-@iff M,w,t,0 F @;

Mwit.cEQoAYiff M,wit,cF ¢@and M,w,t, 6 F y;
M,w,t,cEXQift M,w,t+1,0F ¢;

Mwit,ocEY@ifft =0or M,w,t —1,0 F ¢;

M,w,t,c EF@iff 3t >t: M,v,t',0 F ¢;
M,w,it,cEPoiff 3 <t: M, v.{',c F @;
M,w,t,0 E K, iff Vv € W: if wR{v, then M,v,t,0 F ¢.

® Nk L=

In the next two subsections, we will describe the key ideas of SPAL: the semantics
for the operators (@) and (!¢, ..., @,) (and their “arbitrary” versions () and (!,)).

Already we should say that SPAL validity will be defined as expected: ¢ is SPAL-
valid (Fspar @) iff M, w,t, 0 E ¢ for every base model M = (W, V), sequential epis-
temic model (M,c), w € W, and r € N; and ¢ is SPAL-satisfiability iff Zspas —¢.

Finally, for continuity with our discussion of PAL, we will continue to use the
term ‘proposition’ for a set of worlds. Thus, in SPAL semantics, a non-atomic ¢ may
express different propositions [@]”' = {w € W | M, w,t,0 k= @} at different times ?.
We can also consider the set [@]” = {(w,t) € W x N| M, w,t,0 F ¢} of world-time
pairs at which ¢ is true, but we reserve ‘proposition’ for the set of worlds.

4.1 The Descriptive Update Operator

In SEL, there is a basic distinction between descriptive and hypothetical operators.
Descriptive operators allow us to describe the actual sequence of epistemic changes.
For example, we may wish to make the following descriptive claim about the actual
sequence: (i) the agents’ epistemic states at time ¢ + 1 are obtained from those at ¢
by everyone publicly learning whether ¢ held at ¢. To keep the syntax of SPAL close
to that of PAL, we will use formulas (@) to express a bit more: (ii) ¢ is true at
(w, 1), the agents’ epistemic states at # + 1 are obtained from those at ¢ by everyone
publicly learning whether ¢ held at ¢, and  is true at (w,7 + 1). Formally, we give
the following semantics for our descriptive update operator ().

Definition 1 (Descriptive Update). M,w,z,c E (@) v iff the following hold:
1. M,w,t,0 F @;
2. for each a € Agt, R, | is the set of all pairs (v,u) € W x W such that
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a. vR{u and
b.M,v,t,cF @ifft M,u,t,0 F ¢;
3. M,wit+1,0F y.

Note that condition 2 says that R,  is obtained from Ry by link-cutting update with
@, as in §2. This leads to several other notes about the definition.

First, we have M,w,t,6 F ()T V (=) T iff condition 2 above holds, so the
formula (@)T V (—¢) T expresses the claim (i) above that the agents’ epistemic
states at ¢ + 1 are obtained from those at ¢ by everyone publicly learning whether ¢
held at 7. Let us use the abbreviation ?¢ for (¢) TV (=¢) T. Then (@) y is equivalent
to @A?¢ AXy. Thus, we could have instead started with an operator ?, such that
M,w,t,c E?¢ iff condition 2 above holds, and then treated (¢)y as defined. But
again, we start with (@) y to stay close to the familiar syntax of PAL.

Second, if M, w,t,c E?¢, then it is common knowledge at ¢ that the question of
whether @ held at t will be answered from ¢ to ¢ 4 1. Since we did not put common
knowledge in our language, we will express this fact as follows.

Proposition 1 (Common Knowledge of Upcoming Updates). If M, w.t,c F?0,
then for any sequence ay,...,a, € Agt",

M,w,t,0 E Ky ... Ky, (@ = (@) T)A(— —= (@) T)).

The descriptive character of (@) leads to quite different logical behavior than that
of the standard PAL operator, as shown by the following examples.

Example 2. According to PAL semantics, p — (!p) T is schematically valid. What-
ever is true can be truly announced. But we do not want to say that whatever is true is
in fact truly announced. Indeed, for the descriptive operator, p — (p) T is not even a
SPAL validity. Just because p is true, it does not follow that the next epistemic state
in the actual sequence is obtained from the present epistemic state by update with
p. Note, by contrast, that (p) T — p is a SPAL schematic validity.

Example 3. According to PAL semantics, (!p)(!g)r is schematically equivalent to
(!p A (!p)g)r. Whatever can be accomplished with two consecutive announcements
also can be accomplished with one. But we would not way to say that whatever is
accomplished with two consecutive announcement is accomplished with one, which
almost sounds contradictory. Indeed, for the descriptive operator, none of the follow-
ing formulas is equivalent to either of the others:

L (p)a)T; 2.{pNP)Q)T; 3.(pNg)T.

The difference between formulas 1 and 3 should be clear. The difference between
formula 2 and the others should also be clear when one observes that =K (p — ¢) —
—(p A {(p)q)T is valid. To see this, note that for (p A (p)q) T to be true, (p)q must
be true, so the next epistemic state must be obtained by update with p. In addition,
for (p A (p)q) T to be true, the next epistemic state must be obtained by update with
pA{(p)q. Butif =K(p — q) is true, then update with p is not equivalent to update
with p A (p)q. So in this case (p A (p)g) T cannot be true.
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Next, observe that versions of the standard PAL recursion axioms are SPAL valid.

Proposition 2 (Recursion Axioms). For any @, Y,y € ZLspar and p € At, the fol-
lowing are SPAL validities:

L (@)p < ({(@)T Ap); 3A4p)~v < (@) T A~ (@) ),
2.(o)(wvAx) < (@QyA(9)x);, 4 (@)Ky <+ () TAK(Q— (@)y)).

Unlike in PAL, in SPAL we cannot reduce every formula to one without update op-
erators. What blocks the usual reduction strategy is the fact, which we saw above,
that (p) T <> p is not valid. The left-to-right direction is, but the right-to-left direc-
tion is not. As we also saw, (@) is equivalent to @A?@ A Xy, so every formula can
be reduced to one in which all descriptive operators are followed by T, as in (@) T.
An important SPAL schematic validity involving such formulas is

(p)T — XKYp.

But there is no formula ¢ without update operators such that ¢ — (p)T is valid.?
Finally, let Z,,, be the fragment of .Zsps; without the arbitrary update opera-
tors () and (!,,). Then the truth clause for () is:

o M ,wt,oF(yift o € Ly, M, w,t, 0 F(Q)y.

Observe that just as (@) is equivalent to @A?¢ A Xy, the formula () y is equiv-
alent to () T AXy, where ()T simply says that the next epistemic state is obtained
from the current one by some .Z,, -definable update. A more minimalist approach
would therefore start with a single formula with the same semantics as () T and then
treat formulas of the form () y as defined abbreviations. Nothing will turn on this
here, and we will only briefly touch upon the operator () in §5.

Before discussing further properties of these descriptive operators, we will intro-
duce their hypothetical siblings in the following subsection.

4.2 The Hypothetical Update Operator

In addition to describing the actual sequence of epistemic changes, we can make
claims about hypothetical sequences of epistemic changes, such as the following:

e We can suppose that, instead of whatever actually happened after time ¢, first
everyone publicly learned that ¢y and then everyone publicly learned that ¢;—
with it being common knowledge in advance that whether @y and whether @,
would be publicly answered in that order, and then nothing else would happen.
Assuming all of this, y would hold after the two epistemic changes.

8 One way to see this is to note that the truth of our formulas without update operators is preserved
under taking disjoint unions of models, defined in an obvious way, whereas (p)T concerns the
model globally, not just what is reachable from the point of evaluation, so it is not preserved under
taking disjoint unions of models. (If we had a universal modality, there would be more to say.)
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To express claims like this, we use the hypothetical update operator (!¢, ..., @y—1),
with the following semantics, where we take n = {0,...,n— 1}.

Definition 2 (Hypothetical Update). M, w,z, (Ro,R;,...) E (!¢,...,¢,—1) y iff for
each i € n, there is a function S;: Agt — @(W x W) such that for all i € n:

L. M,w,t+i,(Ro,...,R,S0,- . Sn—1,8n—1,...) F @5’
2. for each a € Agt, S¢ is the set of all pairs (v,u) € W x W such that
a. vS{_ u (where §¢ | = R{) and

b M,v,t 4+, (Ros s ResS0s- s Sncts Sty ... ) E @ iff
M, u,t+1i, <R(),...,Rt,So,...,Snfl,Snfl,...> = ®;;

3. M,w,t+n, <R(),...,R;,So,...,Sn_l,Sn_l,...> Fy.

Observe what is going on here: we are asking whether there is a hypothetical future
evolution of epistemic states, given by the S;’s, such that relative to that future, @
expresses a truth at the initial time 7, the next epistemic state for # 4+ 1 is obtained
by everyone publicly learning whether ¢, etc. The point of stressing relative to
that future is that ¢y may contain future operators. Thus, we are asking whether
@o can make a true claim about a future brought about in part by update with ¢y
itself, where the update content of @y depends on that future. This sounds like it
could be problematically circular. A feature of SPAL is that it can handle these
questions with the well-defined formal semantics above. Note that what we have just
described is exactly what is going on in the surprise exam paradox with the teacher’s
announcement: “You will have an exam that comes as a surprise, i.e., relative to
your future epistemic state brought about in part by this very announcement.” We
will describe this application of SPAL to the surprise exam paradox in §5.

There are a number of further points to make about the above definition.

First, we capture PAL semantics with SPAL semantics (notation: Fp47, and Fgpar.)
as in the following proposition, provable by an easy induction on ¢.

Proposition 3 (From PAL to SPAL). For any base model M = (W,V), epistemic
model # = (W,R,V) where R: Agt — (W xW),we W, t €N, and ¢ € Lpar:

%7W':PAL(P lff M7W7t7<RaRa--->':SPAL Q.

Call a sequential epistemic model .7 = (W, V, o) constant if 6(n) = o (m) for every
n,m € N. It is easy to see that if a ¢ € Zpar is SPAL-satisfiable, then it is SPAL-
satisfiable in a constant model. This fact, plus Proposition 3, gives us:

Proposition 4 (Agreement over Zpar). For any ¢ € Lpar: Epar @ iff Espar .

Although by Proposition 4, the PAL validity p — (!p) T is also a SPAL validity
(in contrast to p — (p) T in Example 2), it is not a SPAL schematic validity. For it
may be incoherent to suppose that everyone publicly learns a certain truth about the
future. The following is one of the key examples to remember.

9 The *...° after S,_; indicates that all coordinates of the new w-sequence are S, thereafter,
representing the supposition that “nothing else happens” after the update with ¢,_;.
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Example 4 (An Incoherent Supposition). The formula p A X—Kp is satisfiable, but
the formula (! p AX—Kp) T is unsatisfiable. For (! p AX—Kp)T to be true at (w,1),
it must be possible to find a future evolution of epistemic states, given by the S;’s,
starting with an update by p A X—Kp, such that relative to that future evolution,
pAX—Kp is true at (w,t). This is clearly impossible, since update by p A X—Kp
leads to Kp holding at # + 1, in which case X—Kp does not hold at ¢.

When it is coherent to suppose that a certain update takes place, what we are sup-
posing is that everyone learns that ¢ was true before the update. Formally,

(!PT — (\p)KYp

is schematically valid, a point to which we will return in §5.
Next, let us observe that although (!p) T — p is a SPAL validity, it is not a SPAL
schematic validity (whereas recall that (p) T — p is a SPAL schematic validity).

Example 5. The formula (! p AXKp)T — (p AXKp) is not a SPAL validity. Just
because we can hypothetically consider a future relative to which it would be true
that p A XKp, and in which the next epistemic state would be obtained by update
with p A XKp, it does not follow that in the actual sequence, p A XKp is true.

An announcement of p A XKp is a kind of self-fulfilling announcement, in the
sense that by announcing p A XK p, one makes it true that XK p.

Example 6 (Self-fulfilling Announcements). Even more curious is an announcement
of simply XKp, as in “After I say this, you will know p.” Of course, such an an-
nouncement could be true, because it could be that right after the announcement,
you acquire knowledge of p in some other way. More interesting is the question
of whether the announcement of “After I say this, you will know p” could be the
source of your new knowledge of p. Since we are assuming that p is an eternal
sentence, “you will know p” entails p by the factivity of knowledge, so you could
plausibly reason as follows: I have been told something that entails p by an author-
itative source I trust, so p is true. Perhaps you could thereby acquire not only belief
but also knowledge of p. Compare this with the case, used in science fiction stories,
of an agent who encounters a machine that can predict the future, and the machine
predicts for her that she will come to know some important proposition (tenselessly
formulated, let us suppose). Does the agent thereby come to know the proposition?

In SPAL, the formula p — (!XKp)Kp is valid. To see this, consider any sequen-
tial epistemic model with w € W and ¢ € N such that M, w,t,0 F p. Where R; is the
agent’s actual epistemic accessibility relation at time ¢, consider the hypothetical
epistemic accessibility relation S for time 7 + 1 defined by vSu iff (i) vR,u and (ii)
M, v,t,0 F piff M,u,t,0 = p. Then observe that for every v € W:

Mvt,oFp iff Mvt+1,Ry,...,R:,S,S,---FKp,
which implies

Mv,t,oFp iff M,vtRo,....,R,S,S,---FEXKp.
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It follows that we have vSu iff both vR,u and
M,v,t,Ry,...,R;,S,S,---EXKp iff M,u,t,Ry,...,R;,S,S,---EXKp.

In other words, we can see S as coming from R, by update with XK p as in Definition
2. It follows from all of the above that S is a witness for the fact that .#Z ,w.,t,0 F
(!XKp)K p, which completes the proof that p — (!XKp)Kp is valid.

To be careful, what this result shows is that if p is true, then there is a set-of-
worlds proposition P such that if the agent’s epistemic state were updated with P,
then Kp would be true at # + 1 and P would turn out to be exactly the set of worlds
w such that XK p was true at w relative to ¢; so the sentence XK p would turn out to
express the proposition P relative to ¢. This does not show, of course, that some par-
ticular source uttering the words “After this announcement, you will know p” would
succeed in causing an agent’s epistemic state to be updated with that P. Officially
SPAL says nothing about what kinds of utterances would cause agents’ epistemic
states to be updated by propositions. It only talks about such epistemic updates
themselves (recall our discussion of “public announcement” in §2).

Next, let us observe a connection between hypothetical formulas of the form
(l@1,...,0,)y and descriptive formulas of the form (¢y) ... (@,)y. Although there
is no guarantee that the truth values of (!¢y,...,@,)y and (@) ... (@) w will be the
same at a particular pointed model, there is the following connection.

Proposition 5 (Equisatisfiability). For any @y,...,¢,, ¥ € ZLspar that do not con-
tain futuristic operators:

(1@1,...,0,) ¥ is SPAL-satisfiable  iff (@1)...(@,)y is SPAL-satisfiable.

Proof (Sketch). If (1¢1,. .., @,) v is SPAL-satisfiable, then there is a sequential epis-
temic model ., world w, and time ¢ such that the actual history ¢ in .’ can be
changed to a hypothetical history ¢’ that witnesses the truth of {!@;,..., @,y at
w,t,0 as in Definition 2. Now let ¢’ be the actual history of a new sequential epis-
temic model .. Then (@) ...{®,)y will be true at w,7,6’ in ./, so it is SPAL-
satisfiable. (Note that this holds for all SPAL formulas whatsoever.)

In the other direction, if (@) ... (®,)y is SPAL-satisfiable, so there is a sequen-
tial epistemic model . whose actual history o makes the formula true at some
world w and time ¢, then the history o, that is exactly like ¢ up to # 4 n, but then re-
peats with o,,(k) = o (¢ +n) for all k > t + n, witnesses the truth of the hypothetical
formula (!¢,...,¢,) ¥ at w,t,0. The “freezing” of the future after 7 + n in the hy-
pothetical history o, (hypothetical histories being essentially finite) does not affect
the truth values of @y,..., @,, V¥, since they do not contain futuristic operators. O

However, this equisatisfiability does not extend to more complex formulas, as
shown by the following example.

Example 7. The formula =K (p <> q) A (!p) T A(lq) T is satisfiable, but the formula
—K(p <> q) N{(p)T AN{q)T is unsatisfiable. For if p and g do not express the same
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proposition at ¢, then it cannot be both that the epistemic state at # + 1 was obtained
by update with p and that the epistemic state at 4+ 1 was obtained by update with q.

It is important to observe that putting a sequence of formulas inside the hypo-
thetical update operator is equivalent to using a sequence of one-formula operators
provided that the formulas do not contain futuristic operators.

Proposition 6 (Hypothetical Sequences). For any base model M = (W, V'), sequen-
tial epistemic model . = (M,c), we W, t €N, and @y, ..., ¢,, W € Lspar such that
Q1,...,Q, contain no futuristic operators:

Mw,it,ocE(l@1,....,00w iff M,wit,cE(¢@))...(!@,) Y.

Proof (Sketch). From right to left, the truth of (!¢@;) ... (!¢,)y at w,t, o requires that
there be a hypothetical history o7, in which everything is like o up until ¢ and then
the accessibility relations at ¢ 4+ 1 are obtained from those at # by update with @,
and then nothing happens, such that (!¢)...(!@,)y is true at w,7 + 1, 07; and that
in turn requires that there be a hypothetical history o3, in which everything is like
o1 up until 7 + 1 and then the accessibility relations at ¢ + 2 are obtained from those
at t + 1 by update with ¢, and then nothing happens, such that (!¢3)...(!¢,)y is
true at w,t + 2, 02; and so on. Since @y,. .., @,, ¥ contain no futuristic operators, the
truth of ¢; at t 4 1 is unaffected by changing what happens after ¢ 4 1, the truth of
¢, att + 2 is unaffected by changing what happens after # 42, and so on. Using this
fact, one can check that ¢, witnesses the truth of (!¢y,...,@,) ¥ at w,7, ¢ according
to Definition 2. In the other direction, any hypothetical history ¢’ that witnesses
the truth of (!¢@y,...,®,) ¥ at w,t, G gives rise to a series of truncated hypothetical
histories o7, ..., 0y, with 0] agreeing with 6’ up to 7 +k and then making no changes

Yo

after ¢ + k, that witness the truth of (!¢y)...(!¢,)y at w,t, o as above. O

It is important to observe that if some of ¢y, ..., @, contain futuristic operators,
then the equivalence in Proposition 6 is not guaranteed. To see this, note from clause
1 of Definition 2 above that for (!¢y, ..., @,)y to be true, ¢; must be true relative to
a hypothetical future in which all of ¢y, ..., @, are publicly learned in that order, and
then nothing else happens. By contrast, for (1¢) ... (!¢,)w to be true, it is required
that ¢ be true relative to a hypothetical future in which @, is publicly learned, and
then nothing else happens and then (!¢,) ... (!¢@,) Y is true at the next time step; but
it is not required that ¢; be true relative to a single hypothetical future in which all
of ¢y,..., @, are learned. If ¢; contains futuristic operators, then this can make a
difference in truth values between (!¢y,...,@,) ¥ and {!¢;)...(!¢@,)y. The moral
is that if some of ¢y,..., @, contain futuristic operators, then the correct way to
formalize the supposition of a sequence of updates of ¢y, ..., @,, of the kind made
at the beginning of this section, is with (!¢, ..., ¢,) rather than (!¢;)...(!@,).

Consider the fragment Zspar (!) of Zspar generated by the following grammar:

O:=pl-0[(QNQ) [ K@ |{!P1,...,00)0.
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We can translate formulas of Zspaz(!) to formulas of Zp4;, in the obvious way,

with T({!@1,...,0,)¥) = (!7(¢1))...(!7(9,)) T(y) in light of Proposition 6. For
this fragment, we can capture SPAL semantics in PAL as follows.

Proposition 7 (From a Fragment of SPAL to PAL). For any base model M =

(W,V), sequential epistemic model ¥ = (M,0), and t € N, define the epistemic

model /1 = (W,0(t),V), where & (t) is the family of accessibility relations {R{ } 4c pgt
from o att. Then foranyt € N, w e W, and ¢ € Lspar(!):

M,w,t,0Espar @ iff S, wEpaL T(Q).

Proof (Sketch). The proof is by induction on ¢. The boolean cases are routine, and
the atomic and K, cases are guaranteed by the construction of .%;. Suppose ¢ is
of the form (!@y,..., @) v, s0 7(¢) = (!7(¢1))...{!7(¥,)) T(y). By Proposition 6,
we have M, w,t,0 Egpar, @ ift M,w,t,6 Espar, (1¢1) ... (1¢,) W, so it suffices to show
that M, w,t,0 Espar (1@1) ... (!@) W iff Z, wEpar (17(@1))...(!7(@n)) T(y). This
equivalence follows easily from the inductive hypothesis and the definitions. O

Finally, let us consider whether analogues of the PAL recursion axioms hold for
('¢1,...,¢,). For formulas from Zspaz(!), they clearly do.

Proposition 8 (Recursion Axioms). For every @y, ..., ¢,, W, x € Lspar(!) and p €
At, the following are SPAL valid:

1. <‘(P177§0n>p<_> (<'(P177§Dn>—|—/\p)’

20001, ., @)~y = (@1, ., @) T A(Q1, .., Q) W),
310 o) (WAX) < (@1, @)Y AP, 0n) X);

4. (o1, ..., 0Ky < ((1@1,. ., @) TAK (@1, ., 00) T = (1@1,...,00) W)).

Proof. 1f one of the axioms is not SPAL-valid, then by Proposition 7, its translation
into Zpaz, is not PAL-valid. But it is straightforward to check that the translation of
each axiom is PAL-valid (recall the axiomatization of PAL from §2). O

What if we drop the restriction to Zspar (1) in Proposition 8? One can check that
schema 1, the right-to-left direction of 2, and the left-to-right direction of 3 are valid
forall @y,...,0,, W, x € ZLspar. However, for the left-to-right direction of 2 and the
right-to-left direction of 3, we can find falsifying instances if we consider formu-
las containing futuristic operators. The reason is that futuristic operators inside of
(1¢1,...,¢,) can lead to non-determinism, as shown by the following example.

Example 8 (Non-determinism). Consider a model . = (W,V, o) with just four
worlds, identifying each world with the set of atomic formulas true at that world:
{p,q}, {p}. {q}, and 0. Let R be the universal relation on W. (The choice of R; for
i > 0O is irrelevant.) Then we claim that all of the following hold:

M {p,q},0,Ro,R1,... E ({XKpVXKq)(Kp\—Kq) 4)
M {p,q},0,Ro,R1,... E ({XKpVXKq)(KqgN—Kp) (5)
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To see this, observe that the hypothetical relation S for time 1 in Figure 2 witnesses
(4), while the hypothetical relation 7" for time 1 in Figure 3 witnesses (5). The wit-
ness for (6) is the hypothetical accessibility relation for time 1 where {p, ¢} is related
only to itself, while all the other states are related to each other.

This example shows that the choice of the S;’s in Definition 2 need not be unique.
Thus, one could consider a variant of the semantics in which we require in part 3
of Definition 2 that y be true for every way of picking the S;’s that satisfies parts 1
and 2 of Definition 2. This would preclude (4)-(6) holding at once. Alternatively, we
can accept the non-determinism by thinking of (!¢, ..., @,)y as saying something
about what could happen, rather than what necessarily would happen.

relation R

PSS relation S
. . - \\
i 1
// 1
o {p.q} {p,q}
4
/, $$ III -——
I, // -7 \\
,I // /// !
2 I {a} {r} {q}
\ e ’ ’
‘e - /, A ’
; RO
h QA L/
1
0 & 0
L
\ e
\ - -
o time 1
time O

Fig. 2 For Example 8. Intended relations are the reflexive transitive closures of those displayed.

Finally, the semantics for the arbitrary hypothetical update operator (!,) is as
expected from the end of §4.1:

o Mw,t,c F (,)yiff 3¢1,....,0, € Lopyy: A ,w,t, 0= (1Q1,...,00) Y.

Thus, (!,) y says that there exists a sequence of n formulas and a hypothetical future
of updates with those formulas that results in the truth of y. Recall that we take
APAL formulas of the form (!)y as SPAL formulas of the form (!;)y, for which
we will see an application in §5. Henceforth we drop the subscript for n = 1.

One can check that analogues of Propositions 3, 4, and 7 hold for the language of
APAL in place of PAL; thus, for the formulas that SPAL and APAL have in common
(under translation), the SPAL semantics and the APAL semantics are equivalent. In
this sense, SPAL is a conservative extension of APAL.
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relation Ry

. relation T
I, R ~ N
1 N
‘\ {p.qa} {r.q}
{r} {q}
0
l
S o - ,/
time 1
time O

Fig. 3 For Example 8. Intended relations are the reflexive transitive closures of those displayed.

S Applications

In this section, we sketch some sample applications of the framework of §4.

First, we will show that SPAL provides an enriched taxonomy of the important
properties of formulas from a dynamic point of view. We begin with the following
fundamental classifications for ¢ € ZLspay:

e ¢ is assimilable iff (@) T is satisfiable; otherwise @ is unassimilable;
e ¢ is always assimilable iff ¢ — (1) T is valid.

For the first definition, note that if (!@)T is satisfiable, then so is (@) T. However,
the converse does not hold, because ¢ may describe a complicated future that we
cannot suppose is brought about just by an update (or even a sequence of updates).
For the second definition, note that the version ¢ — (@) T makes little sense, since
we cannot expect that whenever ¢ is true, the next epistemic state is in fact obtained
by update with p—though we may be able to hypothetically suppose it is.

Intuitively, an assimilable formula is a @ such that we can coherently conceive of
an epistemic history in which @ is true at a time ¢ and then between ¢ and 7 4 1 the
agents update with ¢. An always assimilable formula is a ¢ such that whenever it is
true at a time ¢, we can coherently suppose that the agents update with ¢ from ¢ to
t+ 1. As we have seen in Example 4, not all formulas are assimilable: although we
can conceive of a history in which p AX—Kp is true at a time ¢, we cannot conceive
of one in which p AX—Kp is true at # and then between ¢ and 7 + 1 the agents update
with p A X—Kp, for that would result in knowledge of p at ¢ + 1, contradicting the
requirement that X —K p be true at z. As an exercise, one can check that the following
formula is assimilable but not always assimilable: p N X—Kgq.
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In the standard taxonomy from the literature on PAL (see the references in §2), a
formula @ is successful iff Fpar, @ — (@)@, which is equivalent to Fpsz, = (!@)—¢.
Otherwise ¢ is unsuccessful. A formula @ is self-refuting iff Epar @ — (!¢)—0,
which is equivalent to Fps;, —(!@)@. Neither of these equivalences hold for Fgpyy .
In SPAL, one has several flavors of successfulness. One could consider

(@) Espar —(@)—@, or equivalently, Espar (@) T — (@)@

with the descriptive operator, and analogues for (!¢@). Another flavor is

(b) Fspar ¢ — (@)@

with the hypothetical operator. As above, ¢ — (@)@ makes little sense for the de-
scriptive operator. Similarly, for flavors of self-refutation, one could consider

(c) Espar —(®)@, or equivalently, Espar, (@) T — (@)—¢

with the descriptive operator, and analogues for (!¢). Another flavor is

(d) Fspar @ — (l@)—0

with the hypothetical operator. As above, ¢ — (@)—¢ makes little sense.

Note that if ¢ is unassimilable, then ¢ automatically satisfies (a) and (c). Also
note that if @ satisfies (b) or (d), then ¢ is always assimilable. One can check that
p A—FKgq is an example of an assimilable formula that satisfies (a) but not (b),
because it is not always assimilable; and p A ~Kp A -FKgq is an example of an
assimilable formula that satisfies (c) but not (d), because it is not always assimilable.

Intuitively, a formula ¢ satisfies (a) iff whenever ¢ is assimilated by the agents,
then after that update with ¢, ¢ will (still) express a true proposition. By contrast, ¢
satisfies (b) iff whenever @ is true, we can coherently suppose that it is assimilated
by the agents, and under this supposition, after the update with ¢, ¢ will express a
true proposition. Similar points apply to (c) and (d), but with false in place of true.
We will not decide here how to apply the terms ‘successful’, ‘self-refuting’, and
variants therefore to (a)-(d), since it is enough to make the distinctions.

The next important classifications are:

e ¢ is ascertainable iff ()KY @ is satisfiable;
e ¢ is always ascertainable iff ¢ — ()KY ¢ is valid.

The notion of always ascertainable formulas is motivated by the problems with the
notion of knowability from §3.1. There we pointed out that we cannot formalize
the idea that a true proposition can be known with the principle ¢ — (!)K¢ for
¢© € ZyparL. For with APAL semantics this principle says that if ¢ expresses a true
proposition Pipjia in some initial context, then there is a possible context-changing
update that would result in the agent’s knowing the proposition Py, that ¢ expresses
in the new post-update context, with no guarantee that P,y = Ppitial, SO With no
guarantee that the agent learns the original content of ¢. By contrast, the principle
@ — ()KY ¢ for ¢ € Zypar with SPAL semantics says that if ¢ expresses a true
proposition Pipiia in some initial context, then there is a possible context-changing
update that would result in the agent’s knowing the proposition P, Which is
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expressed by Y ¢ in the new post-update context. Thus, the agent does learn the
original content of ¢. This depends essentially on the assumption that ¢ € -Z4par, SO
¢ does not contain futuristic operators. For if ¢ contains futuristic operators, which
scan the actual future, and we consider a hypothetical update that departs from that
future, then there is no guarantee that Y ¢ expresses at ¢ + 1 in the hypothetical
sequence the proposition that ¢ expresses at  in the actual sequence.'”

Note that given the validity (!¢) T — (!¢)KY ¢ observed in §4.2, if ¢ is always
assimilable, then it is always ascertainable. However, the converse does not hold.

Example 9. Suppose there are just two worlds w and v, with a universal accessibility
relation R; at time 7, and with p true only at w. Let ¢ := XKpV XK—p. We can
make ¢ true at (w,z) with R4+ = {(w,w,),(v,v)}. But note that we cannot make
(1@)T true at (w,7), since link-cutting cannot produce an epistemic relation R; |
such that both ¢ is true at (w,#) and R,y comes from R, by update with ¢. Thus,
@ is not always assimilable. Yet since p — (!p)KY XKp and —-p — (!-p)KY XK—p
are valid, it follows that ¢ — (!)KY ¢ is valid, so ¢ is always ascertainable.

Returning now to Fitch’s paradox, since in PAL and SPAL, —K p means that p is
not known in the agent’s current epistemic state, p A =K p is not an example of an
unascertainable formula. To the contrary, p A =Kp is always ascertainable:

(pA=Kp) = (DKY (p A=Kp)
is valid.!! Indeed, one can easily check the following.

Proposition 9 (Always Assimilable). If ¢ € ZLspar does not contain futuristic op-
erators, then @ is always assimilable and hence always ascertainable.

But recall that Fitch’s sentence was “p is true but no one knows, has known, or
will know p.” This is unascertainable. Indeed, just p A =FKp is unascertainable:
()KY (p A =FKp) is unsatisfiable.'> Thus, both assimilability and ascertainability

10 Even if ¢ does not contain futuristic operators, the fact that (!) brings in a hypothetical future that
may differ from the actual future means that we must be careful with the claim that Y ¢ expresses
at t + 1 in the hypothetical sequence the “same proposition” that ¢ expresses at ¢ in the actual
sequence. This is correct if we mean that the set of worlds Q at which Y @ is true at t + 1 in
the hypothetical sequence is the same as the set of worlds at which ¢ is true at t in the actual
sequence. But the “worlds” in O may have different futures—i.e., with respect to what epistemic
relations these worlds will stand in—in the hypothetical sequence vs. the actual sequence, so in a
finer-grained sense, the set Q does not represent the same proposition relative to the hypothetical
sequence and relative to the actual sequence. Still, the worlds in Q will have the same past up to
t in both the hypothetical sequence and the actual sequence, so for a formula ¢ not containing
futuristic operators, there is a reasonable sense in which the proposition expressed by Y ¢ at 7 + 1
in the hypothetical sequence is “the same” as the proposition expressed by ¢ at ¢ in the actual
sequence. This point deserves further discussion, but we do not have room for it here.

!l Cf. Hintikka on p A —K p in Example 1: ““You may come to know that what I say was true.”

12 This uses the fact that we are treating p as an eternal sentence, so KY p — Kp is valid. If we
were not treating p as eternal, then we would need to eternalize p with temporal operators: where
SQ :=PoV @V F@ (“sometime, ¢”), the formula Sp A ~FKSp is unascertainable.



Knowledge, Time, and Paradox 27

are non-trivial, and one may inquire into their necessary and sufficient syntactic
conditions (cf. Holliday and Icard 2010). The fact that formulas not containing fu-
turistic operators are always ascertainable suggests a question that we leave for the
reader: for those philosophers who hold that statements about what will happen in
the future lack a truth value, how can one prove that not every truth can be known?

Finally, we return to the designated student paradox. In §3.2, we criticized the
formalization of the teacher’s announcement as S := (g1 A=K g1) V (g2 A —K2g2) V
(g3 A —K3g3). The problem with S is that the teacher did not announce that the
student with the gold star did not know, before the announcement, that he or she
had it. Instead, the teacher essentially announced that the student with the gold star
would not know that he or she had it, even after the announcement, since this would
only be revealed upon the students breaking formation. The content of the teacher’s
announcement is better captured by the SPAL formula

X((g1 A—Kig1) V(g2 A —K2g2) V (83 A —K3g3)),

an announcement of which roughly amounts to “after this announcement, the stu-
dent with the gold star won’t know that he or she has it.”

The formalizations with S vs. XS lead to very different predictions for what the
students will know. The formula S is always assimilable, and as we saw in §3.2, if
we start with the model .# from Figure 1, reproduced in Figure 4 below, then after
the agents update with S, they all know that student 3 does not have the gold star
(for if she did have it, then she would have known she had it, contrary to §). By
contrast, the formalization with XS does not support the elimination of 3. Unlike S,
the formula X S is not always assimilable—and the very model . for the designated
student paradox is a counterexample. Specifically, we have

M {g2},0,Ro,--- ¥ (IXS)T.

As we encourage the reader to check, there is no way of cutting links from the stu-
dents’ initial epistemic relations R(l), R%, and RS such that with the new relations R%,
R?, and R? for time 1, the formula XS expresses at time O a proposition P true at
{g2} such that R}, R%, and R? are exactly the result of updating R(l), R(z), and RS by
link-cutting with P. What this means is that assuming the initial epistemic states of
the students are as in .# and assuming that the gold star is on the back of student 2,
it is incoherent to suppose both that by announcing X S, the teacher expresses a true
proposition P at ¢, and that from ¢ to ¢ + 1 the agents update their epistemic states
with that proposition P. Of course, the teacher may utter the words, but it cannot be
that by doing so, the teacher expresses a true proposition with which the students
update their knowledge upon hearing the announcement. Thus, it would be a mis-
take for student 2 to assume that the teacher does express such a true proposition
and use this assumption to eliminate the possibility that student 3 has the gold star.'3

13 See Holliday 2016b for an analysis of the designated student paradox using static multi-agent
epistemic logic. In that analysis, the assumptions about the initial epistemic states of the agents are
not given by the model .#, but rather by a weaker set of syntactically specified assumptions.



28 Wesley H. Holliday

______

Fig. 4 Model for the designated student paradox.

6 Conclusion

Inspired by Hintikka’s (1962) pioneering work on epistemic logic in epistemology,
the purpose of this paper was to motivate (§3), introduce (§4), and apply (§5) the idea
of sequential epistemic logic, building on dynamic epistemic logic. We implemented
the general idea of sequential epistemic logic with a sequential epistemic analogue
of APAL, dubbed SPAL. We defined the logic of SPAL semantically, leaving the
problem of axiomatizing SPAL or fragments thereof to future research.

It should be stressed that the idea of sequential epistemic logic can be imple-
mented in other ways, by looking at other ways of transforming epistemic accessi-
bility relations. We looked only at one way: link-cutting update. But the program of
dynamic epistemic logic provides a variety of ways of transforming epistemic rela-
tions, including a general approach using event models and product update (see the
textbook van Ditmarsch et al 2008). Any way of transforming epistemic relations
could in principle give rise to an associated sequential epistemic logic. In addition,
the sequential epistemic models could be enriched with structure beyond accessibil-
ity relations, such as plausibility relations to be transformed for belief revision.

There is much more to say about the applications sketched in §5 and other poten-
tial applications. But hopefully our discussion here already shows how a sequential
epistemic logic may illuminate the interplay of knowledge, time, and paradox.
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