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Abstract. I summarize the formal framework and some of the main
formal results in my “Epistemic Closure and Epistemic Logic I: Rele-
vant Alternatives and Subjunctivism” (Journal of Philosophical Logic),
adding a few methodological comments on formalization in philosophy.

Some topics in philosophy seem to cry out for formal analysis. The topic
of epistemic closure in epistemology strikes me as a prime example. Its very
name invokes the mathematical idea of a set being closed under a relation. In
one of its simplest forms, the question is whether the set of propositions known
by an ideal logician L must be closed under the relation of logical consequence
from multiple premises: if Py,..., P, are in the set of propositions known by L,
and P, 41 is a logical consequence of {Py, ..., P,} (in which case L has at least
deduced and come to believe P,11), must P, be in the set of propositions
known by L? Epistemic closure questions like this have lead to “one of the most
significant disputes in epistemology over the last forty years” [Kvanvig, 2006,
256], as different philosophical theories of knowledge give different answers. Some
theories support full closure, while others only support weaker closure principles.

One of the goals of my “Epistemic Closure and Epistemic Logic I: Relevant
Alternatives and Subjunctivism” (Holliday 2013b, hereafter ‘EC&ELI’) was to
determine exactly the extent of epistemic closure according to a family of stan-
dard theories of knowledge. The theories at the center of the closure debate, ver-
sions of the relevant alternatives (RA) and subjunctivist theories of knowledge,
are often presented in a kind of modal picture, distinguishing relevant epistemic
alternatives or close counterfactual possibilities from the rest of logical space.
Thus, it seemed that a natural way to study the properties of these theories was
to formalize them with some kind of models for epistemic modal logic. This was
the path followed in EC&ELI, which I will sketch in this summary.

In my view, an application of formal methods in philosophy gains value if:

(1) it is faithful to the philosophical views being formalized,
(2) it can handle concrete examples discussed in the philosophical literature;
(3) it goes beyond particular examples to provide a systematic and general view

of the topic;

* Published in Logic Across the University: Foundations and Applications (College
Publications), eds. Johan van Benthem and Fenrong Liu, 23-31.
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(4) it leads to philosophically-relevant discoveries that would be difficult to make
by non-formal methods alone.

Points (1) and (2) address the worry that by formalizing we may “change the
subject.” Points (3) and (4) address the question, “What do we get out of this?”
Of course, there are other features that contribute to the value of an application
of formal methods, as well as features that detract from it. Here I will explain
the ways in which I think EC&ELI satisfies the four desiderata above.

EC&ELI proposes formalizations of the RA theories of Lewis [1996] and
Heller [1989, 1999|; one way of developing the RA theory of Dretske [1981],
based on Heller; and basic versions of the “subjunctivist” tracking theory of Noz-
ick [1981] and safety theory of Sosa [1999]. To formalize the theories of Lewis
and (one way of developing) Dretske, I introduce RA models, defined below. Tra-
ditional semantics for epistemic logic represent knowledge by the elimination of
possibilities, but without any explicit distinction between those relevant possi-
bilities that an agent must rule out in order to have knowledge vs. those remote,
far-fetched or otherwise irrelevant possibilities that can be properly ignored. RA
models make this distinction explicit by adding relevance orderings.

Definition 1. A relevant alternatives (RA) model is a tuple M = (W, —, <, V)
where (W, —, V) is an ordinary relational model, with — at least reflexive, and
= assigns to each w € W a preorder (reflexive and transitive) <,, on some W,, C
W, for which w is a minimal element. Let v <, v iff u <, v and not v <, u,
and define Min<, (S) = {v € SNW,, | there is no u € S such that u <, v}.

Intuitively, w — v means that v is an uneliminated epistemic alternative for the
agent in w; u <, v means that u is a more relevant alternative at w than v is;
and Min< (S) is the set of most relevant alternatives in S at w. For simplicity,
assume that each <,, is well-founded: S NW,, # (0 implies Min<, (S) # (. (The
main results also hold with more general definitions without well-foundedness.)

Now we can define three semantics for the basic epistemic language with
formulas ¢ ::=p | =@ | (pAp) | Kp: C-semantics for Cartesian, D-semantics for
(one way of developing) Dretske [1981], and L-semantics for Lewis [1996].

Definition 2. Given a well-founded RA model M = (W, —, <X, V) with w € W
and a formula ¢, define M, w F, ¢ and []M = {v € W | M,v E, ¢} as follows
(with propositional cases as usual):

M,wkE. Ko iff Vvemy:w%vv;
M wEy Ko iff VvGMinjw(mgﬂ):wﬁv;
M,wE Ko iff Vo€ Minx,, (W)ﬂmlM:w%vv,

where P = {v € W | v € P}. In C-semantics, for an agent to know ¢ in world w,
all of the —p-possibilities must be eliminated by the agent in w. In D-semantics,

for any ¢ there is a set Min<, ([¢]; ) of most relevant (at w) —p-possibilities
that the agent must eliminate in order to know (. Finally, in L-semantics, there
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is a set of relevant possibilities, Min<, (W), such that for any ¢, in order to
know ¢ the agent must eliminate the —p-possibilities within that set.

Observe that for D-semantics, the whole relevance ordering <,, matters. As
Heller puts it, there are “worlds surrounding the actual world ordered according
to how realistic they are, so that those worlds that are more realistic are closer
to the actual world than the less realistic ones” [1989, 25| with “those that are
too far away from the actual world being irrelevant” [1999, 199|, where how far
is “too far” depends on the ¢ in question. By contrast, L-semantics does not use
the ordering of more or less relevant worlds beyond the set Min<,, (W), taken
to represent Lewis’s single set of relevant alternatives in the current context (for
a formal treatment of the dynamics of context change, see Holliday 2012a).

To formalize the RA theory of Heller [1989, 1999], the basic tracking theory of
Nozick [1981], and the basic safety theory of Sosa [1999], I introduce CB models:

Definition 3. A counterfactual belief (CB) model is a tuple M = (W, D, <, V)
where W, <, and V are defined like W, <, and V in Definition 1, and D is a
serial binary relation on W.

D is a doxastic accessibility relation, so that wDv means that everything the
agent believes in w is true in v. To make the truth clauses for K clearer, I add
a belief operator B for the D relation; but the main results will be stated for
the epistemic language without B. The preorders <,, can be thought of either
as relevance orderings, as before, or as similarity orderings as in Lewis’s [1973]
semantics for counterfactuals. With this setup, we can define three more seman-
tics, formalizing three “subjunctivist” views of knowledge: H-semantics for Heller
[1999], N-semantics for Nozick [1981], and S-semantics for Sosa [1999]. There are
a number of qualifications to be made here, but I will mention only three, re-
ferring to the full paper for the rest. First, in EC&ELIL I only treat the basic
versions of the tracking and safety theory (for the versions with “methods” and
“bases” of belief, see Holliday 2012b, §2.D). Second, Heller and Sosa only propose
necessary conditions for knowledge, so they may wish to take K here to repre-
sent sensitive belief or safe belief, rather than knowledge. Third, I interpret the
sensitivity, adherence, and safety conditions along Lewisian counterfactual lines,
which is common in the literature, but not the only conceivable interpretation.

Definition 4. Given a well-founded CB model M = (W, D, <,V) with w € W
and formula ¢, define M, w F, ¢ and [o]M = {v € W | M,v F, ¢} as follows:

M,wE,; By iff Yv € W:if wDv then M,v E, ¢;

M,wE, Ko iff M,wkF, Bp and
(sensitivity) Vv € Ming,,

M,wkE, Kp iff M,wkE, By and
(sensitivity) Vv € Ming

(mg/[) M, vy Byp;

<w (m::/l) M,v ¥, By, and
(adherence) Vv € Ming,, ([¢]2): M, v E, By;

M,wEs Ko iff M,wk,; Bp and
(safety) Vo € Ming,, ([Be]M): M, v E, .



4 Wesley H. Holliday

In H-semantics, an agent knows ¢ iff she believes ¢ in the actual world but not in
any of the “closest” (most similar or relevant) —@-worlds. This condition implies
both that ¢ is true in the actual world and, according to Lewis’s semantics
for counterfactuals, that if o were false, the agent would not believe ; in this
sense, her belief is “sensitive” to the truth of ¢. In N-semantics, there is an
additional requirement for the agent to know ¢, namely that she believes ¢ in
all of the closest ¢-worlds; in this sense, her belief is “adherent” to the truth of
©.! Finally, in S-semantics, an agent knows ¢ iff she believes ¢ and in the closest
worlds where she believes ¢, ¢ is true; in this sense, her belief in ¢ is “safe.” As
explained in EC&ELIL there are structural similarities between D-semantics and
H/N-semantics, and between L-semantics and S-semantics.

By drawing RA and CB models as in Figs. 1 - 2,2 one can represent many
concrete examples from the epistemological literature, ranging from examples
meant to challenge epistemic closure to examples meant to challenge the neces-
sity or sufficiency of the subjunctivist conditions for knowledge. Doing so helps
make clear what exactly one must assume for the challenge to be successful.
Indeed, it may be helpful if epistemologists were to draw such diagrams when
presenting putative counterexamples.

Ve R
- — - - -
- ’@ - - ’@ <w1 @ <w1 <—>
wq

Fig. 2. CB model for Example 1 in EC&ELI (partially drawn)

! Tracking is the conjunction of sensitivity and adherence. Nozick used ‘variation’ for
what I call ‘sensitivity’ and used ‘sensitivity’ to cover both variation and adherence;
but the narrower use of ‘sensitivity’ is now standard. For discussion of different
options for formalizing adherence, see Observation 4.5 of EC&ELL

2 The solid arrow in the RA model represents the — relation, and the dashed arrows
in the CB model represents the D relation; wi ~,, ws indicates that wi <, w2
and w2 =<, w1, and w1 =, w2 indicates that w1 <y, w2 and wa <, wi; and just
as <y, is the strict part of <.,,, <w, is the strict part of <.,.
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C/D/L/H/N/S-semantics formalize views of knowledge that have been dis-
cussed extensively in epistemology. Having formalized these views, we can move
beyond particular examples to answer general questions. Consider, for instance,
the question of epistemic closure. Given sequences of formulas ¢1,...,¢, and
1,...,%m, and a propositional conjunction g, let us write

Xn,m = Qo NEK@o1 Ao NKop = Kipr VooV Ktppy,.

Call such a xpn,m a closure principle. It states that if the agent knows each of ¢
through ¢,, (and the world satisfies a non-epistemic ), then the agent knows at
least one of 1, through ,,. Our question is: which closure principles are valid?
Theorem 1 below provides the answer. It is an example of a discovery that we
can take back to epistemology, illuminating the closure properties of knowledge
according to standard theories, which would be difficult to make without formal
investigation. Surprisingly, despite the differences between the RA, tracking, and
safety theories of knowledge as formalized by D/H/N/S-semantics, Theorem 1
provides a unifying perspective: the valid epistemic closure principles are essen-
tially the same for these different theories. The only twist is with D-semantics
over total RA models, i.e., RA models in which for all w € W, <, is a total
preorder on W,,, meaning that all possibilities are comparable in relevance. For
comparison, I also include C/L-semantics, which fully support closure in the
sense that if 1 A -+ A @, — 9 is valid, then so is K1 A --- A K, — K.
The statement of Theorem 1 refers to a “T-unpacked” closure principle, which
I will not fully define here (see EC&ELI, §5.2.1). For the first reading of the
theorem, think only of “flat” closure principles Xy, without nesting of the K
operator, which are T-unpacked if g contains o1 A --- A @, as a conjunct. A
key fact is that any formula in the basic epistemic language is equivalent to a
conjunction of T-unpacked closure principles (see §5.2.1), so if we can decide the
validity of such principles, then we can decide the validity of any formula.

Theorem 1 (Closure Theorem). Let
X = 90 A K1 A v A Koy = Kby VooV Kty
be a T-unpacked closure principle.

1. Xn,m is C/L-valid over relevant alternatives models iff

(a) o — L is valid or
(b) fOT’ 50m€¢€ {wla"'ad)m};

P1 AN pn — Y is valid;

2. Xn.m 15 D-valid over total relevant alternatives models iff (a) or
(c) for some ® C {p1,...,0n} and nonempty ¥ C {11,...,¥m},

/\ P < /\ Y is valid;

peP Pew
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3. Xn,m 15 D-valid over all relevant alternatives models iff (a) or
(d)  for some ® C {p1,...,0n} and ¥ € {t1,...,Vm},

/\ © < Y 1s valid.
ped

4. Xn,m ts H/N/S-valid over counterfactual belief models if (a) or (d); and a
flat xn,m is H/N/S-valid over such models only if (a) or (d).3

I will discuss some logical aspects of Theorem 1 before its epistemological
upshot. Using Theorem 1, we can reduce the validity of any closure principle
to the validity of finitely many formulas of lesser modal depth. With a “modal
decomposition” result of this form, van Benthem [2010] proves completeness of
the weakest normal modal logic K with respect to relational models (and notes
the analogous result for the weakest monotonic modal logic EM with respect
to monotonic neighborhood models). Like van Benthem’s proof, the proof of
Theorem 1 in the ‘only if’ directions assumes that the formulas of lesser modal
depth are not valid, from which we infer the existence of models to “glue together”
into a countermodel for Y, ,,. But from there the proof of Theorem 1 requires
new techniques. First, since we are dealing with models in which K¢ — ¢ is
valid, we must use the new idea of T-unpacking. Second, since we are dealing
with a hybrid of relational and ordering semantics, we cannot simply glue all of
the relevant models together at once, as in the basic relational case; instead, we
must put them in the right order, which can be done inductively (see §5.2.2).

Using Theorem 1 we obtain the axiomatizations in Corollary 1 below, stated
for the axioms and rules in Table 1. E is the weakest of the classical modal sys-
tems with PL, MP, and RE. ES; ...S,, is the extension of E with every instance
of schemas S1 ...S,. The logic ECNTX, which I dub the logic of ranked relevant
alternatives, appears not to have been previously identified in the literature.

Corollary 1 (Soundness and Completeness).

1. EMCNT (equivalently, ET plus RK, a.k.a. KT) is sound and complete for
C/L-semantics over RA models.

2. ECNTX (equivalently, ET plus RAT) is sound and complete for D-semantics
over total RA models.

3. ECNT (equivalently, ET plus RA) is sound and complete for D-semantics
over RA models.

4. ECNT is sound (with respect to the full epistemic language) and complete
(with respect to the flat fragment) for H/N/S-semantics over CB models (see
§8.2 on higher-order knowledge).*

3 See §8.2 on higher-order knowledge for the subjunctivist H/N /S-semantics.

* Corollary 1.4 gives the answer, for the flat fragment of the epistemic language (with-
out nesting of K), to the question posed by van Benthem [2010, 153] of what is the
epistemic logic of Nozick’s [1981] notion of knowledge.
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PL. all tautologies MP. W

T.Kg—¢ NKT RE. POV
Kp < K

P1 NN =P
Kol A AKon — Kb

M. K(pA) > Ko AKyp  RK.

OLA - ANQp &P A- Ay
X.K(pAyY) = KoV K RAT.
(e AY) ¥ (G Koy AN ANKpy, = Ky V-V Kby,

P1 N Npp P
C. KpAK — K(p A RA.
P ANKp — K(p A1) Koy h- A Ko, = Ko

Table 1. axiom schemas and rules (n > 0, m > 1)

The epistemological upshot of Theorem 1 is that according to the family of
basic RA, tracking, and safety theories of knowledge formalized by D/H/N/S-
semantics, an ideal logician is guaranteed to know a logical consequence v of
what she knows if and only if ¢ is equivalent to a conjunction of propositions
she already knows! By applying this test, one can check that not only is the
strong closure principle Ko A K(p — 1) — Kt invalid—which is arguably
desirable—but so are very weak and uncontroversial closure principles, such as
K(eNy) = Kp and K¢ — K(pV1), and even the likes of K (oA1)) — K (V)
and Ko A K — K(p V1), while more controversial principles like Ko A K1) —
K(p A1) turn out valid. There is much more to be said about Theorem 1 and
the ramifications of closure failures for higher-order knowledge (see EC&ELL,
§8). But suffice it to say that I take Theorem 1 to be a serious negative result
for the RA and subjunctivist theories in question,® which motivates the search
for new and improved pictures of knowledge in the sequel to EC&ELILS

The last point brings me back to the starting list of virtues in formalization,
in order to add one more. An application of formal methods in philosophy also
gains value if:

(5) it leads to the development of new theories that solve philosophical problems.

® There are other problems for C- and L-semantics having to do with skepticism and
“vacuous knowledge.” See EC&ELI §3 and Holliday 2013c.

5 However, we can also take Theorem 1 to be a neutral result about other desirable
epistemic properties, viz., the properties of having ruled out the relevant alternatives
to a proposition, of having a belief that tracks the truth of a proposition, or of having
a safe belief in a proposition. For example, replace the K by a [J, reading Oy as “the
agent has ruled out the most relevant alternatives to ,” and the newly identified
logic ECNTX, the logic of ranked relevant alternatives, is of independent interest.
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To develop such a theory in the case of knowledge is the goal of further work
(Holliday 2013c,d, 2012b), for which EC&ELI lays the foundation.

There are many claims in EC&ELI about specific theories and results, sum-
marized in the introduction and conclusion of the paper, but here I will end with
some general methodological claims that I think EC&ELI supports:

e While “formal epistemology” often deals with different issues than “tradi-
tional” or “mainstream” epistemology deals, EC&ELI shows that a formal
approach—in this case, a model-theoretic logical approach—can contribute
to our understanding of central issues in traditional epistemology. (For more
on epistemic logic and epistemology, see Holliday 2013a.)

e For modal logicians, epistemology represents an area of sophisticated theo-
rizing in which modal-logical tools can help to clarify and systematize parts
of the philosophical landscape.

e The attempt to apply modal-logical tools to epistemology also benefits modal
logic by broadening its scope, bringing interesting new structures and sys-
tems under its purview.

e Some of these epistemological investigations may be like NASA space mis-
sions, pursued for their intrinsic interest but—as a bonus—also leading to
new “technology” usable in other areas. In EC&ELI, proving the main results
involved an alternative modal decomposition approach to modal complete-
ness theorems, developed in novel ways for new logics. In future work, I plan
to show the wider applicability of this approach to other modal logics.
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