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Denial 



Judgmental Self-Doubt 

Second-guessing your opinion on the basis of evidence about your 
cognitive skills or circumstances. Example occasions: 

 1. You are confident in your memory of certain events, and then 
 your trusted friend says you are on mind-altering drugs. 

 2. You are confident  that the murderer is number 3 in the line-up, 
 and then find out that human beings are generally 
 unreliable in eyewitness testimony. 

 3. You are watching for a tiger and your visual field suddenly goes 
 blank (uniform). 

 4. You are a woman not fully confident of your argument, and then  
  you read that women are generally underconfident. 

 3 



Less obviously, more problematically … 

 
The evolutionist admits to the Creationist that our theories might be 

wrong. The latter concludes his view is just as good. Every view is 
just a hypothesis! (60% of Americans appear to agree.) 

 
You admit that most past scientific theories have been false, and are 

expected to withdraw confidence in yours.  (Pessimistic induction 
over the history of science.) 

 
You are contemplating marriage and read that the divorce rate is 60%. 
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Evidence about your beliefs wrt q vs. 
Evidence about q 

C = The convection currents of the Sun affect solar neutrino rate 
etc.  

e = modeled data. 

 → You form a confidence that C on the basis of e. 

p = 80% of past claims about unobservables that were supported 
by apparently good evidence are now known to be false. 

 

 e is evidence about the Sun. It is 1st-order evidence.   

 p is not evidence about the Sun, but is evidence apparently 
 relevant to the  reliability of your belief about the Sun. 

   As such p is 2nd-order evidence wrt C.  
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2nd –Order Evidence is Irreducible. 

q … There is no tiger around. 

  You are highly confident of q, and then see an 
 orange, furry rustling in the trees. 

vs. 

  You are highly confident of q, and then your  visual field 
 goes blank (uniform). 

 

In second case, you gain no evidence about tigers, yet intuitively 
you should drop your confidence in q. 
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1st – and 2nd- order belief 
Let q be any proposition not containing a belief predicate, e.g.: 

   The murderer used a knife. 

You have a first-order belief in q when you believe q. You express this:  

   “The murderer used a knife.” 

You have a second-order belief (belief about a belief) when you believe 
that you believe q. To express this belief you say:  

   “I believe that the murderer used a knife.” 

If I describe you, I use one belief predicate vs. two belief predicates 

 I say: “He believes q.” vs. “He believes that he believes q.”  
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Degrees of belief as probabilities 

q, r, s, …, q’, r’, s’, …, PS(q) = x, PS(r) = y, … propositions 

PS(q) = x   …   Subject S’s degree of belief in q is x 

PS(q/r) = z   …   S’s degree of belief in q given r is z 

 

PT(PS(q) = x) = x’   …   Subject T has degree of belief x’ that  
   subject S has degree of belief x in q. 

 

PS( PS(q) = x) = x’’   …   Subject S has degree of belief x’’ that 
   subject S has degree of belief x in q. 
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Second-Order Probabilities: P(P’(q)=x) = y  

Don’t exist:  An assertion concerning probability is merely an 
expression, not true or false, or measurable. (de Finetti – emotive) 

 A degree of belief is a disposition to act that has a certain strength. (Ramsey)  
It can be measured by betting behavior. Same for beliefs about what your 
beliefs are: we ask you to bet about how you would bet. 

Are trivial: All of them will be 0  or 1. (Self-transparency about 
beliefs) 

 Skyrms:   We’re not infallible about our beliefs. 

 Better:   Bayesian rationality proudly lacks requirements on substantive 
 knowledge. Whether you believe q is a contingent matter of fact.  

 Skyrms (1980), “Higher-Order Degrees of Belief” 
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Agenda – Generalizing 1st-order 
conditionalization 

 

  Synchronic bridge principle 
  Rule for 2nd-order revision 
  Defense 
  Applications 
  More defense 
  More applications 

10 



The Principle that Gets in the Way 
 

P(q/P(q) = x) = x  Self-Respect (SR) 
 

 The degree of belief you think you have in q is what 
 your degree of belief should be. 

 Don’t disapprove of your own degrees of belief. 

 
 (Instance of traditional “Miller’s Principle.”) 
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Restricted Self-Respect (RSR) 

P(q/P(q) = x) = x  (where defined) 

 provided there is no statement of probability for which 
P has a value which when combined with “P(q) = x” is 
relevant to q. 

This says: The mere fact that you have a degree of belief is 
not by itself a reason for it to be different. 
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Restricted Self-Respect (RSR) 

 P(q/P(q) = x) = x   (where defined) 

provided there is no statement of probability for 
which P has a value which when combined with 
“P(q) = x” is probabilistically relevant to q. 

This says: The mere fact that you have a degree of belief 
is not by itself a reason for it to be different. 

       
13 



Unrestricted Self-Respect (USR) 

 
P(q/P(q) = x . r) = x   (where defined) 

   for any r* for which P has a value 
 

I.e., roughly, no matter what else the subject 
   believes. 

         
*r a statement of probability 
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Expressing Reliability 
 
        y = PR(q/P(q) = x) 
 
This is what your confidence x indicates is the objective 

probability of q. 
 
This is what you get when you ask to what degree the subject’s 

confidence x in q confirms q and combine it with a prior on q 
or P(q) = x. Equals how far x tells you q is true. 

 
“PR” means objective probability, whatever kind you like.  
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With e: P(q) = x, h: q,  
 
PR(q/P(q) = x) =   PR(P(q) = x/q)PR(q)   =   PR(e/h)PR(h)  
    PR(P(q) = x)   PR(e) 
and 
 
PR(q/P(q) = x) = [LR – RM]/(LR-1) (leverage equation, TT, Ch. 5) 
 
 
  LR = PR(P(q)=x/q)/PR(P(q)=x/-q)   
  LR = PR(e/h)/PR(e/-h) 
 
  RM = PR(P(P(q)=x/q)PR(P(q)=x)]  
  RM = PR(e/h)/P(e)) 
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likelihood ratio measure 

ratio measure 



With e: P(q) = x, h: q,  
 
PR(q/P(q) = x) =   PR(P(q) = x/q)PR(q)   =   PR(e/h)PR(h)  
    PR(P(q) = x)   PR(e) 
and 
 
PR(q/P(q) = x) = [LR – RM]/(LR-1) 
 
 
  LR = PR(P(q)=x/q)/PR(P(q)=x/-q)   
  LR = PR(e/h)/PR(e/-h)  
 
  RM = PR(P(P(q)=x/q)PR(P(q)=x)]  
  RM = PR(e/h)/PR(e)) 
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tracking (adherence/variation) 

safety 



Common Empirical Finding 
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Accuracy = 
% correct 

Confidence 
.75 



Expressing the Quandary 

Explicitly: 
 

P(q/[P(q) = x . PR(q/P(q) = x) = y]) = ? 
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Expressing the Quandary 

Explicitly: 

   P(q/       ) = ? 
 
 

  Given that:    P(q) = x . PR(q/P(q) = x) = y 
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What is the Answer? 

Explicitly: 

  P(q/[P(q) = x . PR(q/P(q) = x) = y]) = ? 
 

USR says r doesn’t matter:    

  P(q/[P(q) = x . PR(q/P(q) = x) = y]) = x 
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What is the Answer? 
 

Consider:  
   P(q/P(q) = x . PR(q/P(q) = x) = y) = ? 
 
The LHS is an instance of the LHS of the Conditional 

Principle: 

   P(q/ B . Ch(q/B) = y) =   

with B as P(q) = x, if we take credences as probabilities, 
and PR as chance. 
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Conditional Principle 

 
 

     Cr(q/ B . Ch(q/B) = y) = y 
 
 
 (Skyrms 1988, van Fraassen 1989, Vranas 2004) 
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What is the Answer? 

  P(q/P(q) = x . PR(q/P(q) = x) = y) = y 
 

This is an instance of the Conditional Principle: 

   P(q/ B . Ch(q/B) = y) = y   

with B as P(q) = x, if we take credences as probabilities, and take PR 
as chance. 
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Forced Choice 

P(q/(P(q) = x . PR(q/P(q) = x) = y)) = ? 
 

USR:   P(q/(P(q) = x . PR(q/P(q) = x) = y)) = x 
    

Conditional Principle*:  
   P(q/(P(q) = x . PR(q/P(q) = x) = y)) = y 
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Symmetry Argument  

 Our respect for the judgment of others is not 
 unconditional (and CP agrees): 

  PT(q/PS(q) = x . PR(q/PS(q) = x) = y) = y 

 Why should it be for ourselves? 

  PT(q/PT(q) = x . PR(q/PT(q) = x) = y) = y 

   (special case where S = T) 
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Symmetry Argument  

 Our respect for the judgment of others is not 
 unconditional (and CP agrees): 

  PT(q/PS(q) = x . PR(q/PS(q) = x) = y) = y 

 Why should it be for ourselves? 

  PT(q/PT(q) = x . PR(q/ PT(q) = x) = y) = y 

   (special case where S = T) 
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Calibration and Re-calibration 

Cal  (synchronic constraint) 

   P(q/P(q) = x . PR(q/P(q) = x) = y) = y 
 
Re-Cal     (diachronic constraint) 
   Pf(q) = Pi(q/Pi(q) = x . PR(q/Pi(q) = x) = y) = y 
 
To be calibrated (here) is for one’s confidence to match one’s 

rationally believed reliability. (x = y)   

To re-calibrate is to update one’s confidence in light of information 
about one’s reliability. (x  y) 
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Calibration and Re-calibration 

Cal  (synchronic constraint) 

   P(q/[P(q) = x . PR(q/P(q) = x) = y]) = y 
 
Re-Cal     (diachronic constraint) 
   Pf(q) = Pi(q/[Pi(q) = x . PR(q/Pi(q) = x) = y]) = y 
 
To be calibrated (here) is for one’s confidence to match one’s 

rationally believed reliability. (x = y)  (not objective!) 

To re-calibrate is to update one’s confidence in light of information 
about one’s reliability. (x  y) 
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Applications 
Eyewitness case:     PR(q/P(q) = .99) = .70 

Tiger case:     PR(q/P(q) = high) = .5 

Creationist case:     PR(q/P(q) = .99) < 1 

Pessimistic Induction:     PR(q/P(q) = .8) < .5  

 (But see: “Optimism about the Pessimistic Induction” and “The 
  Rationality of Science in Relation to its History”) 

Woman:  PR(q/P(q) = .75) = .95 
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Applications 

Eyewitness case:     PR(q/P(q) = .99) = .70 

Tiger case:     PR(q/P(q) = x) = .5 

Creationist case:     PR(q/P(q) = .99) < 1 

Pessimistic Induction:     PR(q/P(q) = .8) < .5  

Woman:  PR(q/P(q) = .75) = .95 

Marriage: Hopefully you have more specific evidence. 
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Taking Stock 

Supposed reasons to ignore 2nd-order evidence: 

 -- If you start second-guessing, how do you stop? 
Arbitrarily? 

 -- 2nd-order probabilities don’t exist, are trivial, are 
incoherent. 

 -- Miller’s Principle (a.k.a. Self-Respect) 

 -- 2nd order revision could be distorting 

 -- Is there any added value? 
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Incoherence? 

 
Intuitively, it is puzzling how a person can doubt 

her own judgment, and remain consistent and 
one subject. 
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Coherence concerns 

 
 1) Against Cal and Re-Cal in particular. 

 2) Against applying the function P to  
   P-statements. 

 3) Doesn’t probabilistic coherence already 
  imply calibration? 
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Incoherence of Cal? 

1.  P(P(q) = x) = 1,  Perfect Confidence  
2.  P(q) = x,   Accuracy      
3.  P(PR(q/P(q) = x) = y) = 1 Certainty about your reliability 
4.  x ≠ y  You are not calibrated  
  
Cal says: 
  
P(q/(P(q) = x . PR(q/P(q) = x) = y)) = y 
  
From 1. , 3., and Cal, we get P(q) = y.   
But by assumption 2., P(q) = x. By 4, contradiction. 
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Incoherence of Cal? Nah. 

1.  P(P(q) = x) = 1,  Perfect Confidence  
2.  P(q) = x,   Accuracy      
3.  P(PR(q/P(q) = x) = y) = 1 Certainty about your reliability 
4.  x ≠ y  You are not calibrated  
  
Cal says: 
  
P(q/(P(q) = x . PR(q/P(q) = x) = y)) = y 
  
From 1. , 3., and Cal, we get P(q) = y.   
But by assumption 2., P(q) = x. By 4, contradiction. 
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Incoherence of Second-order Probability? 

Power Set problem: 

Let domain, D, of probability function P be all propositions of form q, r, etc., 
P(q) = x, P(r) = y,  etc.,  P(P(q) = x) = z, etc., etc., q∈ S,  etc., and all Boolean 
combinations thereof. 

Let S1, S2, S3, … be the subsets of D. For each one, we can construct a distinct 
proposition  in D: 

  P(q) = z if and only if q ∈ S1.  

   P(q) = z if and only if q ∈ S2.  etc. … 

   

These propositions  fulfill the requirements for being in D. 

  This gives a 1-1 mapping of the set of subsets of D into  D.   
      Impossible. 

 
37 



Solutions? 

Typed theory?  

 Not P’(P’(q) = x) = y, but only P”(P’(q) = x) = y 
 
 
Re-Cal  becomes:   

 Pf“(q) = Pi“(q/ Pi‘(q) = x . PR(q/Pi‘(q) = x) = y) = y 
 
 

38 



Solutions 
Typed theory?  
   
  P”(P’(q) = x) = y but not P’(P’(q) = x) = y 
 
Re-Cal becomes:    
   
 Pf“(q) = Pi“(q/Pi‘(q) = x . PR(q/Pi‘(q) = x) = y) = y    
 
   not self-correcting or determinate  
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Solution 
 The class of propositions is not a set. 

 
 But then probability must be definable on proper classes. 
 
It is: 
 
Rubin, Herman, A new approach to the foundations of 

probability. 1969 Foundations of Mathematics (Symposium 
Commemorating Kurt Gödel, Columbus, Ohio, 1966) pp. 46-
-50 Springer, New York.  
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Doesn’t probabilistic coherence imply 
calibration? 

41 



Does probabilistic coherence imply 
calibration? 

1. No, it implies that it is not a priori impossible for you to 
be calibrated. (van Fraassen) 

 
 Note: My purpose here is not to defend adherence to 

 the axioms. 
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Does probabilistic coherence imply 
calibration? 

1. No, it implies that it is not a priori impossible for you to 
be calibrated. (van Fraassen) 

 
2. It implies that the subjective Bayesian must regard 

himself as someone who will be calibrated in the long 
run. 
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The coherent agent must regard himself as someone 
who will be vindicated in the long run with regard to 
calibration. 

 
He may be someone whose concern with calibration 

doesn’t extend beyond the long run. 

He may be someone for whom it extends to the short 
run. 

44 



The Well-calibrated Bayesian 

 
Dawid (1980): “The coherent sequential forecaster believes 

that he will be empirically well-calibrated.  … Considering 
the wide variety of admissible selections that might be 
used to test the calibration property, it seems doubtful, 
though not impossible, that such a coherent self-
recalibrating distribution could exist.” (my emphasis) 
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The Well-calibrated Bayesian 

Dawid (1980): “The coherent sequential forecaster believes 
that he will be empirically well-calibrated.  … Considering 
the wide variety of admissible selections that might be 
used to test the calibration property, it seems doubtful, 
though not impossible, that such a coherent self-
recalibrating distribution could exist.” (my emphasis) 

  
"although I cannot perceive any clear logical assumptions that 

might govern its [finite re-calibration’s] detailed application, 
I find its general message unavoidable."  (my emphasis) 
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Taking Stock 

Supposed reasons to ignore 2nd-order evidence: 

 -- If you start second-guessing, how do you stop? 
Arbitrarily? 

 -- 2nd-order probabilities don’t exist, are trivial, are 
incoherent. 

 -- Miller’s Principle 

 -- 2nd order revision could be distorting 

 -- Is there any added value? 
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Regress and Pathology? 

Re-Cal   
  Pf(q) = Pi(q/Pi(q) = x . PR(q/Pi(q) = x) = y) = y 
 
This yields a new first-order degree of belief in 

q, so it looks like Re-Cal is applicable again.  
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Regress and Pathology?  No. 

Re-Cal   
  Pf(q) = Pi(q/Pi(q) = x . PR(q/Pi(q) = x) = y) = y 
 
This yields a new first-order degree of belief in q, so 

Re-Cal is applicable again? 
 
1. Yes, but only provided you have new evidence 

about your reliability. 

2. Yes, that’s how conditionalization works. 
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Regress and Pathology?  No. 

Re-Cal   
  Pf(q) = Pi(q/Pi(q) = x . PR(q/Pi(q) = x) = y) = y 
 
This yields a new first-order degree of belief in q, so Re-

Cal is applicable again? 
 
1. Yes, but only provided you have new evidence, 

evidence about your reliability at y after a re-cal at x. 

2. Yes, that’s how conditionalization works. 
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Is Recalibration distorting? 

Seidenfeld, Teddy, 1985. “Calibration, Coherence, and Scoring 
Rules.” Philosophy of Science 52(2): 274-94. 

 
Problem: You can be calibrated in your confidence about rain by 

knowing that 20% of the days in the year it rains in your locale 
and announcing 20% chance of rain every day. 

You have no discrimination. You could hedge your bets this way. 
 

Calibration is an improper scoring rule. 
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Is Recalibration distorting? 

Seidenfeld, Teddy, 1985. “Calibration, Coherence, and Scoring 
Rules.” Philosophy of Science 52(2): 274-94. 

 
Problem: You can be calibrated in your confidence about rain by 

knowing that 20% of the days in the year it rains in your locale 
and announcing 20% chance of rain every day. 

You have no discrimination. You could hedge your bets this way. 
Calibration is an improper scoring rule. 
 
Re-Cal is not a scoring rule, but a principle of conditionalization.  
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Distorting in the short run? 
 

Teddy:  

 Say you have one data point about your reliability. Are you 
seriously saying it is rational to update on that basis? 
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Distorting in the short run? 
Teddy:  

 Say you have one data point about your reliability. Are you 
seriously saying it is rational to update on that basis? 

 

 Say you flip a coin once. Are you seriously saying that it’s 
rational to update your belief that it’s fair on that basis? 

 

 All conditionalizing can be distorting in the short run. Deal 
with it at second order as you do at first order. 
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Jeffrey Re-Calibration 

Pf(q) =  

 Pi(q/(B.PR(q/B)=y))Pf(B.PR(q/B)=y) +  

   Pi(q/-(B.PR(q/B)=y))Pf(-(B.PR(q/B)=y)) 
 
If B is P(q) = x 
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Jeffrey Re-Calibration 

Pf(q) =  

 Pi(q/(B.PR(q/B)=y))Pf(B.PR(q/B)=y) +  

         Pi(q/-(B.PR(q/B)=y))Pf(-(B.PR(q/B)=y)) 
 
If B is P(q) = x 
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From CP 
How confident are you in 
your judgments of your 
belief and reliability? 

Together (via LR) these measure 
degree to which B.PR(q/B)=y) 
confirms q.  



Distorting in the long run? 

The inference embedded in Re-Cal goes like this, for day i, and qi = It 
will rain on e.g. May 9, 2013: 

 P[qi / P(qj)=xj . Ch(qv/P(qv)=x)=y(q,v,x) ]  =  y(q,i,xi) 

You will end up with the right degree of belief in q if you have the right 
chance hypothesis (function), i.e., the correct y(q,v,x). 

So, the issue is whether in the long run we can converge on the correct 
chance  function, y(q,v,x), which gives the chance of rain on a given 
day (qv) on which the subject believes to degree x that it will rain. 

The evidence stream is ordered pairs, day by day:  
    <degrees of belief in rain, rain or not>.  
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Likelihood Ratio Convergence Theorem (LRCT) 

Hawthorne, James, “Inductive Logic,” Stanford Encyclopedia 
of Philosophy. 

  Likelihood Ratio: P(e/h)/P(e/-h) 

Suppose you will be fed separating evidence, that is h, -h predict at 
least some different outcomes in the stream of evidence you’re 
going to get.  (Modulo Hume and brains in vats, we have that.) 

 
Then if h is the true hypothesis it is probable that you will see 

outcomes that rule out all the –h hypotheses within a certain 
number of trials. (Law of Large Numbers) 
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Likelihood Ratio Convergence Theorem (LRCT) 

Hawthorne, James, “Inductive Logic,” Stanford Encyclopedia 
of Philosophy. 

  Likelihood Ratio: P(e/h)/P(e/-h) 

 

An LRCT theorem can be proven for the chance hypothesis 
(calibration function) in Re-Cal*, i.e., where h =   
    Ch(qv,P(qv)=x)=y(q,v,c,x)  

 

  Adding 2nd-order conditioning to 1st-order conditioning is 
  not distorting in the long run.  
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Pointless? 
 

Teddy (1985):   

 1st-order conditionalization alone gets you to the 
true probability of q (and to subjective calibration) in 
the long run. Why bother with the re-calibration 
rule? 
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THEOREM: (Schervish 1983): If a forecaster is not well 
calibrated over a given (finite) sequence of events, then 
his well-calibrated counterpart outperforms him in 
similar decisions taken over this sequence. 
 
Does Re-Cal make you actually more calibrated over 
finite sequences? Well, depends how long. 
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What’s the Point? 

Seidenfeld:  Why bother with re-calibration? 

 -- If you think CP is a synchronic rationality constraint, then you 
 should follow Re-Cal. 

 -- Adherence to PP is not preserved under Jeffrey 
 conditionalization. Re-Cal at least gets you back to CP. 

 -- Re-Cal can endogenously change extreme degrees of belief, to 
 the other extreme or to non-extreme values. 

 -- Speculation: the bad predictive consequences of biasing 
 assumptions in the model governing first-order 
 conditionalization can be corrected by using Re-Cal, without 
 knowing what those assumptions are (or re-training model). 
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Revising extreme probabilities 

 
 Pf(q) = Pi(q/Pi(q) = x . PR(q/Pi(q) = x) = y) = y 
 
If q is an empirical proposition, and x is 1,  
      y may still be < 1. 
 

You are certain of q and read in a reputable journal 
that people who are certain are sometimes wrong. 
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Bayesianism 

How far is this account restricted to a bayesian approach? 

 1)  Consistency is a big intuitive problem with self-doubt. Best to 
 use a system that puts a premium on global consistency. 

 2)  The fact that Re-Cal is a conditionalization rule allowed it to 
 escape the objection that re-calibration is improper, etc. 

 3)  I’d be happy if there were 25 different ways to formulate the 
 ideas and see added value. That’s what you do in 
 implementation. 
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-- There’s a connection between higher-order evidence 
 questions and re-calibration. 

    and a connection between these and discussion of the 
 Principal Principle (or rather CP). 

-- A second-order,  Bayesian, re-calibration rule  can be 
 formulated and defended by the independently 
 appealing Conditional Principle. 

 -- Does it preserve coherence?  

 -- What is the added value short term? 
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end 
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THEOREM: (Schervish 1983): If a forecaster is not well 
calibrated over a given (finite) sequence of events, then 
his well-calibrated counterpart outperforms him in 
similar decisions taken over this sequence. 
 
Does Re-Cal make you actually more calibrated over 
finite sequences? Well, depends how long. 
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P(q/ P(q) = x . r) = x = P(q . P(q) = x . r) 
      P(P(q) = x . r)  
 
Your degree of belief in q doesn’t occur in the 

condition. What’s relevant is what you take 
P(q) to be, i.e., your degree of belief in “P(q) 
=x)”. See denominator. 
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A nice rule if you can use it 

Teddy (1985):  

 1. One does not know one’s calibration curve – the real 
relation between one’s reliability and confidence in q:   

  y = PR(q/P(q) = x)  

 2. If one knew that one would know the true probability of q 
and wouldn’t need to re-calibrate! 
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A nice rule if you can use it 

Teddy (1985):  

 1. One does not know one’s calibration curve – the real 
relation between one’s reliability and confidence in q:   

  y = PR(q/P(q) = x)  

 2. If one knew that one would know the true probability of q 
and wouldn’t need to re-calibrate! 

 
1, 2 are true. But we can have evidence about y = PR(q/P(q) = x). 
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A nice rule if you can use it 

 
       Pf(h) = Pi(h/e)Pf(e) + Pi(h/-e)Pf(-e) 
            
 
 We may not know the true probability of any e when 

we update on our best information about it. 
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