The Difference between Knowledge and Understanding

Sherri Roush
Department of Philosophy
Group in Logic and the Methodology of Science
U.C. Berkeley
KNOWLEDGE = JUSTIFIED TRUE BELIEF.
Smith believes from experience

\[q \quad \text{... Jones owns a Ford.} \]

and also believes

\[p \quad \text{... Someone in the office owns a Ford.} \]
Gettier case

$q \ldots \text{Jones owns a Ford}$

\downarrow

$p \ldots \text{Someone in the office owns a Ford.}$

\downarrow

justified belief in p
Gettier case

\[q = \text{Jones owns a Ford.} \quad \text{false} \]

\[\Downarrow \]

\[p = \text{Someone in the office owns a Ford.} \]
Gettier case

\[q = \text{Jones owns a Ford.} \quad \text{false} \]

\[\Downarrow \]

\[p = \text{Someone in the office owns a Ford.} \quad \text{true} \]
Gettier case

\[q = \text{Jones owns a Ford.} \quad \text{false} \]

\[p = \text{Someone in the office owns a Ford.} \quad \text{true} \]

\[r = \text{Brown owns a Ford.} \quad \text{true} \]
Gettier case

$q = \text{Jones owns a Ford.} \quad \text{false}$

$p = \text{Someone in the office owns a Ford.} \quad \text{true}$

$r = \text{Brown owns a Ford.} \quad \text{true}$

... oops
Gettier case

$q = \text{Jones owns a Ford.} \quad \text{false}$

\Downarrow

$p = \text{Someone in the office owns a Ford.} \quad \text{true}$

$r = \text{Brown owns a Ford.} \quad \text{true}$

... justified, true belief in p

but not knowledge
Improve on the hamster wheel

Consider a more complete training regimen for your pet
IMPROVE ON THE HAMSTER WHEEL

CONSIDER A MORE COMPLETE TRAINING REGIMEN FOR YOUR PET
Plan

1. Added value of knowledge over true belief follows from the tracking conditions.

2. Tracking improves relevance matching, hence Gettierization avoidance (w/o ad hoc additions).

3. Don’t need to presuppose value of knowledge to see value of gettierization avoidance.

4. Understanding \approx relevance matching.

5. Understanding is simulation.
The True Belief Game – Approx.

Payoff assumptions: p true \rightarrow (believe $>$ not believe), p false \rightarrow (not believe $>$ believe)
“Mere” good and bad states

Good belief states:

- p true S believes p true belief
- p false S does not believe p good lack of belief

Bad belief states:

- p true S does not believe p bad lack of belief
- p false S believes p false belief
“Mere” good and bad states

Good belief states:

<table>
<thead>
<tr>
<th>p true</th>
<th>S believes p</th>
<th>true belief</th>
</tr>
</thead>
<tbody>
<tr>
<td>p false</td>
<td>S does not believe p</td>
<td>good lack of belief</td>
</tr>
</tbody>
</table>

Bad belief states:

<table>
<thead>
<tr>
<th>p true</th>
<th>S does not believe p</th>
<th>bad lack of belief</th>
</tr>
</thead>
<tbody>
<tr>
<td>p false</td>
<td>S believes p</td>
<td>false belief</td>
</tr>
<tr>
<td>Belief state:</td>
<td>p true, S doesn’t believe p</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Strategy:</td>
<td>In response to p, don’t believe p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In response to $\neg p$, don’t believe p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(disposition, regularity)</td>
<td></td>
</tr>
</tbody>
</table>
The True Belief Game – Approx.

Payoff assumptions: p true → (believe > not believe),
 p false → (not believe > believe)
Belief state vs. Strategy

Belief state: p true, S doesn’t believe p

Strategy: In response to p, don’t believe p
In response to $\neg p$, don’t believe p

disposition, rule for responding to all possible plays of opponent.
Belief state vs. Strategy

Belief state: p true, S doesn’t believe p

 $p, -b(p)$

Strategy: disposition, regularity for responding to all possible plays of opponent.

 e.g. Tracking is a strategy:

1) $P(-b(p)/-p) > s$

2) $P(b(p)/p) > t$
Knowledge = Tracking

Tracking is a strategy:

1) $P(-b(p)/-p) > s$

2) $P(b(p)/p) > t$

Variation (Sensitivity)

Adherence
The True Belief Game – Approx.

<table>
<thead>
<tr>
<th></th>
<th>b(p)</th>
<th>- b(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>(0,10)</td>
<td>(0,-20)</td>
</tr>
<tr>
<td>- p</td>
<td>(0,-7)</td>
<td>(0,5)</td>
</tr>
</tbody>
</table>

Payoff assumptions: p true → (believe > not believe),
 p false → (not believe > believe)
The subject who is a tracker of p has an

Evolutionarily Stable Strategy (ESS)
Tracker is evolutionarily stable

→ Tracking type (R) **strictly dominates** any type following any other conditions beyond true belief (-R), in the struggle for survival and utiles.

→ Once this strategy is achieved by some level of majority of the population, no small population with an alternative strategy can “invade” and drive it out.

→ These properties hold independently of the dynamics of interaction.
If we think intuitively that knowledge can be of evolutionary or utilitarian value, then this is a unique explanatory advantage of the tracking theory.

This shows (tracking) knowledge is more valuable than mere true belief, without ad hoc tinkering.
p = Route A will get me to Larissa by 12.

Suppose:

\[p \text{ is true} \]

\[S, S' \text{ believe } p \]

S uses a paper map. \hspace{1cm} S' uses real-time GPS.
p = Route A will get me to Larissa by 12.

p is true
S, S’ believe p
S’ has a strong disposition to believe p when it’s true and not believe p when it’s false.

S uses a paper map.
S’ uses real-time GPS.

S has a true belief.
S’ has a true belief and is tracking.
p = Route A will get me to Larissa by 12.

p is true
S, S’ believe p
S’ has a strong disposition to believe p when it’s true and not believe p when it’s false.

S uses a paper map. S’ uses real-time GPS.

S has a true belief. S’ has a true belief and a contingency detector.
The Gettier Problem
Gettier cases and relevance

\[p = \text{Someone in the office owns a Ford.} \quad true \]
\[q = \text{Jones owns a Ford.} \quad false \]
\[r = \text{Brown owns a Ford.} \quad true \]
Gettier cases and relevance

\[p = \text{Someone in the office owns a Ford.} \quad true \]

\[q = \text{Jones owns a Ford.} \quad false \]

\[r = \text{Brown owns a Ford.} \quad true \]

\[P(b(p)/-q.r) = P(b(p)/-q.-r) \]

but

\[P(p/-q.r) \neq P(p/-q.-r) \]
q is (positively) relevant to your believing p.

\[P(b(p)/q) \gg P(b(p)/-q) \]

Or:\n\[\frac{P(b(p)/q)}{P(b(p)/-q)} \gg 1 \]
q is (positively) relevant to p

\[P(p/q) \gg P(p/-q) \]

Or:

\[\frac{P(p/q)}{P(p/-q)} \gg 1 \]
Relevance matching on q for p:

\[
P(b(p)/q)/P(b(p)/-q) = P(p/q)/P(p/-q)
\]

The difference q’s truth value makes to your *belief* in p is the same as the difference q’s truth value makes to p’s truth value.

Relevance mismatch on q for p

\[
P(b(p)/q)/P(b(p)/-q) \neq P(p/q)/P(p/-q)
\]

q’s truth value makes more of a difference, or less of a difference, to your *belief* in p than it does to p’s truth value.
Gettier case

\[p = \text{Someone in the office owns a Ford.} \quad \text{true} \]
\[q = \text{Jones owns a Ford.} \quad \text{false} \]
\[r = \text{Brown owns a Ford.} \quad \text{true} \]

\[P(b(p)/q) \gg P(b(p)/\neg q) \]

but

\[P(p/q) > P(p/\neg q) \]
Relevance matching on q for p:
\[\frac{P(b(p)/q)}{P(b(p)/-q)} = \frac{P(p/q)}{P(p/-q)} \]

Relevance mismatch on q for p
\[\frac{P(b(p)/q)}{P(b(p)/-q)} \neq \frac{P(p/q)}{P(p/-q)} \]

Gettierization → relevance mismatch for p on some q for which \(P(b(p)/q) >> P(b(p)/-q) \)

or ...

48
Relevance matching on q for p:

\[\frac{P(b(p)/q)}{P(b(p)/-q)} = \frac{P(p/q)}{P(p/-q)} \]

Relevance mismatch on q for p

\[\frac{P(b(p)/q)}{P(b(p)/-q)} \neq \frac{P(p/q)}{P(p/-q)} \]

Gettierization → relevance mismatch for p on some r for which \(P(p/r) \gg P(p/-r) \)
Gettierized belief in p

Depends on:

1) basing belief in p on q (the helper) when q is false
2) having a relevance mismatch on q for 1) to exploit
3) p is true
Relation of *Relevance Matching* for p and *Tracking* p

\[
P(b(p)/q) = P(b(p)/p)P(q/b(p).p)P(p/q) + P(q/p)\]
\[
P(b(p)/-p)P(q/b(p).-p)P(-p/q)\]
\[
P(q/-p)\]

\[
P(b(p)/-q) = P(b(p)/p)P(-q/b(p).p)P(p/-q) + P(-q/p)\]
\[
P(b(p)/-p)P(-q/b(p).-p)P(-p/-q)\]
\[
P(-q/-p)\]
Relevance Matching

\[
\frac{P(b(p)/q)}{P(b(p)/-q)} = \frac{P(p/q)}{P(p/-q)}
\]
Relation of *Relevance Matching* for p and *Tracking* p

\[
P(b(p)/q) = P(b(p)/p)P(q/b(p).p)P(p/q) + \]
\[
P(q/p) \]
\[
P(b(p)/-p)P(q/b(p).-p)P(-p/q) + \]
\[
P(q/-p) \]

\[
P(b(p)/-q) = P(b(p)/p)P(-q/b(p).p)P(p/-q) + \]
\[
P(-q/p) \]
\[
P(b(p)/-p)P(-q/b(p).-p)P(-p/-q) + \]
\[
P(-q/-p) \]
Perfect Sensitivity to p

\[P(b(p)/q) = P(b(p)/p)P(q/b(p).p)P(p/q)P(q/p) \]

\[P(b(p)/-q) = P(b(p)/p)P(-q/b(p).p)P(p/-q)P(-q/p) \]
Relation of *Tracking* p to

Relevance Matching for p on q

\[P(b(p)/q) = \alpha \ P(p/q) \]

\[P(b(p)/-q) = \alpha \ P(p/-q) \]
Relation of Tracking p to Relevance Matching for p

\[
P(b(p)/q) = P(p/q) = P(b(p)/-q) = P(p/-q)
\]
Relation of *Tracking* p to *Relevance Matching* for p

\[
P(b(p)/q) = P(p/q)
\]

\[
P(b(p)/-q) = P(p/-q)
\]

1. Perfect tracking of p ⇒ Perfect relevance matching for p on q
Relation of *Tracking* p to *Relevance Matching* for p

\[
\begin{align*}
P(b(p)/q) & \quad = \quad P(p/q) \\
P(b(p)/-q) & \quad = \quad P(p/-q)
\end{align*}
\]

1. Perfect tracking of p \(\Rightarrow\) Perfect relevance matching for p on q, *for all* q

I.e., perfect tracking \(\Rightarrow\) No possibility of gettierization (on any q)
Relation of *Tracking* \(p \) to *Relevance Matching* for \(p \)

\[
\begin{align*}
\frac{P(b(p)/q)}{P(b(p)/-q)} &= \frac{P(p/q)}{P(p/-q)}
\end{align*}
\]

1. Perfect tracking of \(p \) \(\Rightarrow \) Perfect relevance matching for \(p \) on \(q \), *for all* \(q \)

2. Increased tracking \(\Rightarrow \) Increased relevance matching for \(p \) on every \(q \)
Relation of *Tracking p* to *Relevance Matching* for p

\[
\frac{P(b(p)/q)}{P(b(p)/-q)} = \frac{P(p/q)}{P(p/-q)}
\]

1. Perfect tracking of p ⇔ Perfect relevance matching for p on all q

2. Increased tracking of p ⇒ Increased relevance matching for p on all q

3. Increased relevance matching for p on a given q ☓ Increased tracking of p
Perfect tracking

p \leftrightarrow b(p)

Perfect relevance matching
p \rightarrow q \rightarrow b(p) \rightarrow p

p \rightarrow q \rightarrow b(p) \rightarrow p
Gettier cases, relevance matching, and understanding

\[p = \text{someone in the office owns a Ford.} \]
\[q = \text{Jones owns a Ford.} \]
\[r = \text{Brown owns a Ford.} \]

Have: \(P(p/q) = 1, P(b(p)/q) = 1 \)

But: \(P(p/-q) \neq P(b(p)/-q) \)

Other ways than \(q \) of making \(p \) true are more relevant to \(p \) than \(S \)'s belief dispositions reflect.

\(S \) doesn’t understand why \(p \) is true.
Definition – first pass

If S believes p and p is true, then

S’s *understanding* of why p is true *improves* iff there is an increase in relevance matching for p on some q and no outweighing decrease in relevance matching for other q.
Recall

Increasing your tracking of p will increase your relevance matching for p on every q.

\implies Tracking brings relevance matching, G-avoidance, and understanding.

Increasing your relevance matching on a given q doesn’t necessarily increase your tracking of p.
Knowledge and Understanding

Increasing your tracking of p will increase your relevance matching for p on every q.

→ Knowledge brings relevance matching, G-avoidance, and understanding.

Increasing your relevance matching on a given q doesn’t necessarily increase your tracking of p.

But improved understanding of p always improves level of tracking (knowledge) of p.
Understanding and Explanation

Fact: Relevance matching your belief in p to the web of q’s relevant to p does not require you to be able to cite the factors probabilistically relevant to p.

Opinions:

1. If we add a citation requirement, then we get a definition of ability to give an explanation. (= Salmon statistical relevance view)
2. Not all understanding brings ability to give explanations.
Prediction of human behavior

S: I know what she’ll do.
A: How do you know?
S: I understand her.

We do this without being able to list all the factors. (Challenge for the higher-order view of understanding other minds.)
p’s web of relevance
Mere true belief in p

Diagram:

- q_1
- q_2
- q_3
- q_4
- $b(p)$
- p
- q_5
- q_6
- q_7
- q_8
Relevance Matching, Understanding?
Understanding

Understanding *why you should believe* \(p \)

Understanding *why* \(p \) is true
Understanding

\[p = \text{Jefferson is dead} \]

Understanding \textit{why you should believe} \(p \)
\[q_1 = \text{lack of pulse} \]

Understanding \textit{why} \(p \)
\[q_2 = \text{gunshot wound} \]
\[q_3 = \text{political disputes} \]

\textit{indicators of} \(p \) \hspace{1cm} \textit{vs.} \hspace{1cm} \textit{what makes} \(p \) \text{ true}
Awkward

You track p via a great indicator

\Rightarrow You relevance match on all q.

\Rightarrow You understand why Jefferson is dead.
Your believing p (hurricane tomorrow) co-varies with output of a great computer simulation programmed by someone else.

⇒ You track p.
⇒ You relevance match on all q.
⇒ You understand why p is true.
Hyperbolic Intellectualism
Understanding?
Owning the relevance matching
Prediction of human behavior

S: I know what she’ll do.
A: How do you know?
S: I understand her.

We do this without being able to list all the factors. (Challenge for the higher-order view of understanding other minds.)
Understanding as simulation

\[m(q_1) \quad q_2 \quad m(q_2) \quad m(q_3) \]
\[m(q_4) \quad q_6 \quad b(p) \quad m(q_6) \]
\[m(q_5) \quad m(q_7) \quad q_8 \quad m(q_8) \]
Summary

1. Knowledge (tracking) is more valuable than mere true belief; it is an ESS.

2. What explains that value (tracking) also directly opposes gettierization.

3. Gettierization avoidance for \(p \) has a value – contributing to understanding \(p \) – even if we don’t assume knowledge of \(p \) has value.

4. Understanding \(\sim \) relevance matching \(\sim \) simulation
Somewhere, something incredible is waiting to be known.

-Carl Sagan-
p \longleftrightarrow b(p)