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Abstract. According to the Relevant Alternatives (RA) Theory of knowl-
edge, knowing that something is the case involves ruling out (only) the
relevant alternatives. The conception of knowledge in epistemic logic also
involves the elimination of possibilities, but without an explicit distinc-
tion, among the possibilities consistent with an agent’s information, be-
tween those relevant possibilities that an agent must rule out in order to
know and those remote, far-fetched or otherwise irrelevant possibilities.
In this article, I propose formalizations of two versions of the RA theory.
Doing so clarifies a famous debate in epistemology, pitting Fred Dretske
against David Lewis, about whether the RA theorist should accept the
principle that knowledge is closed under known implication, familiar as
the K axiom in epistemic logic. Dretske’s case against closure under
known implication leads to a study of other closure principles, while
Lewis’s defense of closure by appeal to the claimed context sensitivity
of knowledge attributions leads to a study of the dynamics of context.
Having followed the first lead at length in other work, here I focus more
on the second, especially on logical issues associated with developing a
dynamic epistemic logic of context change over models for the RA theory.

1 Introduction

Example 1 (Medical Diagnosis). Suppose that two medical students, A and B,
are subjected to a test. Their professor introduces them to the same patient,
who presents various symptoms, and the students are to make a diagnosis of
the patient’s condition. After some independent investigation, both students
conclude that the patient has a common condition c. In fact, they are both
correct. Yet only student A passes the test. For the professor wished to see if
the students would check for another common condition c

0 that causes the same
visible symptoms as c. While A ran laboratory tests to rule out c0 before making
the diagnosis of c, B made the diagnosis of c after only a physical exam.

In evaluating the students, the professor concludes that although both gave
the correct diagnosis of c, student B did not know that the patient’s condition
was c, since B did not rule out the alternative of c0. Had the patient’s condition
been c

0, student B might still have made the diagnosis of c, since the physical
exam would not have revealed a difference. Student B was lucky. The condition
B associated with the patient’s visible symptoms happened to be the condition
the patient had, but if the professor had chosen a patient with c

0, student B
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might have made a misdiagnosis. By contrast, student A secured against this
possibility of error by running the lab tests. For this reason, the professor judges
that student A knew that the patient’s condition was c and passed the test.

Of course, A did not secure against every possibility of error. Suppose there
is an extremely rare disease1

x such that people with x appear to have c on lab
tests given for c and c

0, even though people with x are immune to c, and only
extensive further testing can detect x in its early stages. Should we say that A
did not know that the patient had c after all, since A did not rule out x?

According to a classic relevant alternatives style answer (e.g., [15, p. 775],
[13, p. 365]), the requirement that one rule out all possibilities of error would
make knowledge impossible, since there are always some possibilities of error—
however remote and far-fetched—that are not eliminated by one’s evidence and
experience. Yet if no one had a special reason to think that the patient may have
had x instead of c, it should not have been necessary to rule out such a remote
possibility in order to know that the patient had the common condition c.2

Much could be said about Example 1, but our interest here is in the pressure it
appears to put on the claim that knowledge is closed under known implication.
At its simplest, this is the claim that if an agent knows ' and knows that '
implies  , then she knows  : (K' ^ K(' !  )) ! K , familiar as the K
axiom of standard epistemic logic [19,14]. One obvious objection to K is that
an agent with bounded rationality may know ' and know that ' implies  , yet
not “put two and two together” and draw a conclusion about  . Such an agent
may not even believe  , let alone know it. The challenge of the much-discussed
“problem of logical omniscience” [27,16] is to develop a good theoretical model of
the knowledge of such agents. However, according to a different objection to K
made famous in epistemology by Dretske [12] and Nozick [26] (and applicable to
more sophisticated closure claims), knowledge would not be closed under known
implication even for “ideally astute logicians” [12, p. 1010], who always put two
and two together and come to believe all the consequences of what they know. It
is this objection, not the logical omniscience problem, that is our starting point.

If one accepts the analysis at the end of Example 1, then one is close to
denying K. For suppose A knows that if her patient has c, then he does not have
x (because x confers immunity to c), (i) K (c ! ¬x). Since A did not run any of
the tests that could detect the presence or absence of x, arguably she does not
know that the patient does not have x, (ii) ¬K¬x. Given the professor’s judgment
that A knows that the patient has condition c, (iii) Kc, together (i) through (iii)
violate the following instance of K: (iv) (Kc ^K (c ! ¬x)) ! K¬x. To retain
K, one must say either that A does not know that the patient has condition c

after all (having not excluded x), or else that A can know that a patient does
not have a disease x without running any of the specialized tests for the disease
(having learned instead that the patient has c, but from lab results consistent
with x). While the second option threatens to commit us to problematic “easy
1 Perhaps it has never been documented, but it is a possibility of medical theory.
2 Skeptics about medical knowledge may substitute one of the standard cases in the

epistemology literature with a similar structure (see, e.g., [12, p. 1015], [13, p. 369]).
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knowledge” [8], the first option threatens to commit us to radical skepticism
about knowledge, given the inevitability of uneliminated possibilities of error.

Response 1 Dretske [12] and others [26,17] respond to the inconsistency of
(i) through (iv), a version of the now standard “skeptical paradox” [7,9], by
arguing that K is invalid, for reasons other than bounded rationality. Dretske’s
explanation of why K is invalid even for ideally astute logicians is in terms of his
Relevant Alternatives (RA) Theory of knowledge [13]. According to this theory,
to know p is (to truly believe p and) to have ruled out the relevant alternatives

to p. In coming to know c and c ! ¬x, student A rules out certain relevant
alternatives. In order to know ¬x, A must rule out certain relevant alternatives.
However, the relevant alternatives in the two cases are not the same. According
to our earlier reasoning, x is not an alternative that must be ruled out in order
for Kc (or K(c ! ¬x)) to hold. But x is an alternative that must be ruled out
in order for K¬x to hold. It is because the relevant alternatives may be different
for what is in the antecedent and consequent of K that K is not valid in general.

Response 2 Against Response 1, Lewis [25] and others [7,9] attempt to explain
away apparent closure failures by appeal to epistemic contextualism, the thesis
that the truth values of knowledge attributions are context sensitive. According
to Lewis’s contextualist RA theory, in the context C of our conversation before
we raised the possibility of the rare disease x, that possibility was irrelevant; so
although A had not eliminated the possibility of x, we could truly say in C that
A knew (at time t) that the patient’s condition was c (Kc). However, by raising
the possibility of x in our conversation, we changed the context to a new C0 in
which the uneliminated possibility of x was relevant. Hence we could truly say
in C0 that A did not know that the patient did not have x (¬K¬x), although A
knew that x confers immunity to c (K(c ! ¬x)), which did not require ruling
out x. Is this a violation of K in context C0? It is not, because in C0, unlike C,
we could no longer truly say that A knew (at t) that the patient’s condition
was c (Kc), given that A had not eliminated the newly relevant possibility of x.
Moreover, Lewis argues that there is no violation of K in context C either:

Knowledge is closed under implication.... Implication preserves truth—
that is, it preserves truth in any given, fixed context. But if we switch
contexts, all bets are off.... Dretske gets the phenomenon right...it is
just that he misclassifies what he sees. He thinks it is a phenomenon
of logic, when really it is a phenomenon of pragmatics. Closure, rightly
understood, survives the rest. If we evaluate the conclusion for truth not
with respect to the context in which it was uttered, but instead with
respect to the different context in which the premise was uttered, then
truth is preserved. (564)

Lewis claims that if we evaluate the consequent of (iv), K¬x, with respect to
the context C of our conversation before we raised the possibility of x, then it
should come out true—despite the fact that A had not eliminated the possibility
of x through any special tests—because the possibility of x was irrelevant in C.
If this is correct, then there is no violation of K in either context C0 or C.
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This article introduces a formal framework to study Responses 1 and 2: in
§2, the response of denying K leads to a study of other closure principles; in §3,
the response of maintaining K with contextualism leads to a study of context
dynamics. Having focused on the first response in detail elsewhere [20], here I
focus more on the second, especially on logical issues associated with developing
a dynamic epistemic logic [11,2] of context change over models for the RA theory.

2 Relevant Alternatives

An important distinction between versions of the RA theory, which our formal-
ization will capture, has to do with logical structure. On the one hand, Dretske
[13] states the following definition in developing his RA theory: “call the set of
possible alternatives that a person must be in an evidential position to exclude
(when he knows P ) the Relevancy Set (RS)” (371). On the other hand, Heller
[17] considers (and rejects) an interpretation of the RA theory in which “there
is a certain set of worlds selected as relevant,” independently of any proposition,
“and S must be able to rule out the not-p worlds within that set” (197).

According to Dretske, for every proposition P , there is a relevancy set for
that P . Let us translate this into Heller’s talk of worlds. Where P is the set of
worlds in which P is false, let r(P ) be the relevancy set for P , for which Dretske
assumes r(P ) ✓ P . To be more precise, since objective features of an agent’s
situation in world w may affect what alternatives are relevant (see [13, p. 377]
and [10, p. 30f] on “subject factors”), let us write r(P,w) for the relevancy set
for P in world w, which may differ from r(P, v) for a distinct world v in which
the agent’s situation is different. Finally, if we allow (unlike Dretske) that the
conversational context C of those attributing knowledge to the agent can also
affect what alternatives are relevant (see [10, p. 30f] on “attributor factors”), then
we should write rC (P,w) to make the relativization to context explicit.

The quote from Dretske suggests the following definition:

RS89: for every context C, world w, and for every (8) proposition P , there is
(9) a set of relevant (in w) not-P worlds, rC (P,w) ✓ P , such that in order
to know P in w (relative to C) one must rule out the worlds in rC (P,w).

By contrast, the quote from Heller suggests the following definition:

RS98: for every context C and world w, there is (9) a set of relevant (in w)
worlds, RC (w), such that for every (8) proposition P , in order to know P in
w (relative to C) one must rule out the worlds in RC (w) \ P .

As a simple logical observation, every RS98 theory is a RS89 theory (take
rC(P,w) = RC(w) \ P ), but not necessarily vice versa. From now on, when I
refer to RS89 theories, I have in mind theories that are not also RS98 theo-
ries. This distinction is at the heart of the disagreement about epistemic closure
between Dretske and Lewis [25], as Lewis clearly adopts an RS98 theory.

Below we define our first class of models, following Heller’s RA picture of
“worlds surrounding the actual world ordered according to how realistic they
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are, so that those worlds that are more realistic are closer to the actual world
than the less realistic ones” [18, p. 25] with “those that are too far away from the
actual world being irrelevant” [17, p. 199]. These models represent the epistemic
state of an agent from a third-person perspective. We should not assume that
anything in the model is something that the agent has in mind. Contextualists
should think of the model M as associated with a fixed context of knowledge
attribution, so a change in context corresponds to a change in models from M to
M0 (see §3). Just as the model is not something that the agent has in mind, it is
not something that particular speakers attributing knowledge to the agent have
in mind either. For possibilities may be relevant and hence should be included
in our model, even if the attributors are not considering them (see [10, p. 33]).

For simplicity (and in line with [25]) we will not represent in our RA models
an agent’s beliefs separately from her knowledge. Adding the usual machinery to
do so is easy, but if the only point is to add believing ' as a necessary condition
for knowing ', it will not change any of our results about RA knowledge.

Definition 1 (RA Model). A relevant alternatives model is a tuple M of the
form hW,_,�, V i where:

1. W is a non-empty set;
2. _ is a reflexive binary relation on W ;
3. � assigns to each w 2 W a binary relation �

w

on some W

w

✓ W ;
(a) �

w

is reflexive and transitive;
(b) for all v 2 W

w

, w �
w

v;
4. V assigns to each p 2 At a set V (p) ✓ W .

For w 2 W , the pair M, w is a pointed model.

In addition, I assume the well-foundedness of each �
w

(always satisfied in fi-
nite models) in what follows, since it allows us to state more perspicuous truth
definitions. However, this does not affect our results about closure (see [20]).

I refer to elements of W as “worlds” or “possibilities” interchangeably. As
usual, the function V maps each atom p to the set of worlds V (p) where it holds.

Take w _ v to mean that v is an uneliminated possibility for the agent in
w. According to Lewis’s [25] notion of elimination, _ should be an equivalence
relation; but for generality I assume only that _ is reflexive, reflecting the fact
that an agent can never eliminate her actual world as a possibility. Whether we
assume transitivity and symmetry in addition to reflexivity does not affect our
results about closure, unless we make further assumptions about � (see [20]).

Take u �
w

v to mean that u is at least as relevant (at w) as v is.3 A relation
satisfying Definition 1.3a is a preorder. The family of preorders in an RA model
is like one of Lewis’s (weakly centered) comparative similarity systems [23, §2.3]
or standard �-models [22], but without his assumption that each �

w

is total

on its field W

w

. Condition 3b, that w is at least as relevant at w as any other
3 One might expect u �

w

v to mean that v is at least as relevant (at w) as u is, by
analogy with x  y in arithmetic, but Lewis’s [23, §2.3] convention is now standard.
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world is, follows Lewis’s [25] Rule of Actuality that “actuality is always a relevant
alternative” (554). Allowing �

w

6=�
v

when w 6= v reflects the world-relativity

of comparative relevance (based on “subject factors”) mentioned above. A fixed
context may help to determine not only which possibilities are relevant, given
the way things actually are, but also which possibilities would be relevant, were
things different. Moreover, we allow �

w

6=�
v

even when v is an uneliminated
possibility for the agent in w, so w _ v. For we do not assume that in w the
agent can eliminate any v for which �

v

6=�
w

. As Lewis [25] put it, “the subject
himself may not be able to tell what is properly ignored” (554).

Notation 1 (Derived Relations, Min) Where w, v, u 2 W and S ✓ W ,
• u �

w

v iff u �
w

v and not v �
w

u; and u '
w

v iff u �
w

v and v �
w

u;
• Min�

w

(S) = {v 2 S \W

w

| there is no u 2 S such that u �
w

v}.

Hence u �
w

v means that possibility u is more relevant (at w) than possibility
v is, while u '

w

v means that they are equally relevant. Min�
w

(S) is the set of
most relevant (at w) possibilities out of those in S that are ordered by �

w

.
When it comes to choosing a formal language to go with our RA models, we

have a number of choices. For our first, we choose the following (cf. §3.2).

Definition 2 (Epistemic Language). Let At = {p, q, r, . . . } be a set of atomic
sentences. The epistemic language is generated as follows, where p 2 At:

' ::= p | ¬' | (' ^ ') | K'.

As usual, expressions containing _, !, and $ are abbreviations, and by con-
vention ^ and _ bind more strongly than ! or $ in the absence of parentheses.

We now interpret the language of Definition 2 in RA models, considering
three semantics for the K operator. I call these C-semantics, for Cartesian, D-
semantics, for Dretske, and L-semantics, for Lewis. C-semantics is not supposed
to capture Descartes’ view of knowledge. Rather, it is supposed to reflect a high
standard for the truth of knowledge claims—knowledge requires ruling out all

possibilities of error—in the spirit of Descartes’ worries about error in the First
Meditation. D-semantics is one (but not the only) way of understanding Dretske’s
[13] RS89 theory, using Heller’s [18,17] picture of relevance orderings of worlds.4
Finally, L-semantics follows Lewis’s [25] RS98 theory (for a fixed context).

Definition 3 (Truth in an RA Model). Given a well-founded RA model
M = hW,_,�, V i with w 2 W and a formula ' in the epistemic language,
define M, w ✏

x

' (' is true at w in M according to X-semantics) as follows:

M, w ✏
x

p iff w 2 V (p);
M, w ✏

x

¬' iff M, w 2
x

';
M, w ✏

x

' ^  iff M, w ✏
x

' and M, w ✏
x

 .

4 Elsewhere [21] I argue for a better way of developing Dretske’s [13] RS89 theory,
without the familiar world-ordering picture. Hence I take the ‘D’ in D-semantics as
loosely as the ‘C’ in C-semantics. Still, it is a helpful mnemonic for remembering
that D-semantics formalizes an RA theory that allows closure failure, as Dretske’s
does, while L-semantics formalizes an RA theory that does not, like Lewis’s.
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For the K operator, the C-semantics clause is that of standard modal logic:

M, w ✏
c

K' iff 8v 2 W : if w _ v then M, v ✏
c

',

which states that ' is known at w iff ' is true in all possibilities uneliminated
at w. I will write this clause in another, equivalent way below, for comparison
with the D- and L-semantics clauses. First, we need two pieces of notation.

Notation 2 (Extension and Complement) Where M = hW,_,�, V i,

• J'KM
x

= {v 2 W | M, v ✏
x

'} is the set of worlds where ' is true in M
according to X-semantics; if M and x are clear from context, we write J'K.

• For S ✓ W , we write S = {v 2 W | v 62 S} for the complement of S in W .

Definition 4 (Truth in an RA Model cont.). For C-, D-, and L-semantics,
the clauses for the K operator are:

M, w ✏
c

K' iff 8v 2 J'K
c

: w 6_ v;
M, w ✏

d

K' iff 8v 2 Min�
w

�
J'K

d

�
: w 6_ v;

M, w ✏
l

K' iff 8v 2 Min�
w

(W ) \ J'K
l

: w 6_ v.

In C-semantics, for an agent to know ' in w, all ¬'-possibilities must be elimi-
nated by the agent in w. In D-semantics, for any ' there is a set Min�

w

�
J'K

d

�

of most relevant (at w) ¬'-possibilities that the agent must eliminate in or-
der to know '. Finally, in L-semantics, there is a set of relevant possibilities,
Min�

w

(W ), such that for any ', in order to know ' the agent must eliminate
the ¬'-possibilities within that set. Recall the RS89 vs. RS98 distinction above.

If ' is valid in X-semantics, we say that ' is X-valid and write ✏
x

'.

Since for L-semantics we think of Min�
w

(W ) as the set of simply relevant

worlds, ignoring the rest of �
w

, we allow Min�
w

(W ) to contain multiple worlds.
It is easy to check that according to C/D/L-semantics, whatever is known is

true. For D- and L-semantics, Fact 1 reflects Lewis’s [25, p. 554] observation that
the veridicality of knowledge follows from his Rule of Actuality, given that an
agent can never eliminate her actual world as a possibility. Formally, veridicality
follows from the fact that w is minimal in �

w

(Definition 1.3b) and w _ w.

Fact 1 (Veridicality) K'! ' is C/D/L-valid.

c

w1

'
w1

c

0

w2

�
w1 x

w3

�
w1 c, x

w4

Fig. 1: an RA model for Example 1 (partially drawn, reflexive loops omitted)
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Consider the model in Fig. 1, drawn for student A in Example 1. An arrow
from w to v indicates that w _ v. (For all v 2 W , v _ v, but we omit all
reflexive loops.) The ordering of the worlds by their relevance at w1, thought
of as the actual world, is indicated between worlds.5 In w1, the patient has the
common condition c, represented by the atomic sentence c true at w1. Possibility
w2, in which the patient has the other common condition c

0 instead of c, is just
as relevant as w1. Since the model is for student A, who ran the lab tests to rule
out c

0, A has eliminated w2 in w1.6 A more remote possibility than w2 is w3, in
which the patient has the rare disease x. Since A has not run any tests to rule
out x, A has not eliminated w3 in w1. Finally, the most remote possibility of all
is w4, in which the patient has both c and x. We assume that A has learned from
textbooks that x confers immunity to c, so A has eliminated w4 in w1.

Now consider C-semantics. In discussing Example 1, we held that student A
knows that the patient’s condition is c, despite the fact that A did not rule out
the remote possibility of the patient’s having x. C-semantics issues the opposite
verdict. According to C-semantics, Kc is true at w1 iff all ¬c-worlds, regardless
of their relevance, are ruled out by the agent in w1. However, w3 is not ruled out
by A in w1, so Kc is false at w1. Nonetheless, A has some knowledge in w1. For
example, one can check that K(¬x ! c) is true at w1 in C-semantics.

Consider D-semantics. First observe that D-semantics issues our original ver-
dict that student A knows the patient’s condition is c. Kc is true at w1 since
the most relevant (at w1) ¬c-world, w2, is ruled out by A in w1. K(c ! ¬x) is
also true at w1, since the most relevant (at w1) ¬(c ! ¬x)-world, w4, is ruled
out by A in w1. Not only that, but K(c $ ¬x) is true at w1, since the most
relevant (at w1) ¬(c $ ¬x)-world, w2, is ruled out by A in w1. However, the
most relevant (at w1) x-world, w3, is not ruled out by A in w1, so K¬x is false
at w1 in D-semantics. Hence A does not know that the patient does not have x.

We have shown the second part of the following fact, which matches Dretske’s
[12] view. The first part, which is standard, matches Lewis’s [25, p. 563n21].

Fact 2 (Known Implication) The principles K' ^ K ('!  ) ! K and
K' ^K ('$  ) ! K are C/L-valid, but not D-valid.

Finally, consider the model in Fig. 1 from the perspective of L-semantics.
What is noteworthy in this case is that according to L-semantics, student A does

know that the patient does not have disease x. K¬x is true at w1, because ¬x
is true in all of the most relevant (at w1) worlds, namely in w1 and w2.

In the terminology of Dretske [12, p. 1007], Fact 2 shows that the knowledge
operator K is not fully penetrating, since it does not penetrate to all logical con-
sequence of what is known. Yet Dretske claims that K is semi-penetrating, since
5 We ignore the relevance orderings for other worlds, as well as which possibilities are

ruled out at other worlds, since we are not concerned here with student A’s higher-
order knowledge at w1. If we were, we should include other worlds in the model.

6 We could add new atomic sentences t

c

and t

c

0 standing for “the test results favor c

over c

0” and “the test results favor c

0 over c,” respectively. We would then make t

c

true and t

c

0 false at w1, w3, and w4, while making t

c

0 true and t

c

false at w2.
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it does penetrate to some logical consequences: “it seems to me fairly obvious
that if someone knows that P and Q, he thereby knows that Q” and “If he knows
that P is the case, he knows that P or Q is the case” (1009). This is supposed
to be the “trivial side” of Dretske’s thesis (ibid.). However, if we understand the
RA theory according to D-semantics, even these monotonicity principles fail.

Fact 3 (Simplification & Addition) The principles K (' ^  ) ! K'^K 

and K'! K (' _  ) are C/L-valid, but not D-valid.
Proof The proof of C/L-validity is standard. For D-semantics, the pointed
model M, w1 in Fig. 1 falsifies both K(c ^ ¬x) ! K¬x and Kc ! K(c _ ¬x).
These principle are of the form K↵! K�. In both cases, the most relevant (at
w1) ¬↵-world in M is w2, which is eliminated by the agent in w1, so K↵ is true
at w1. However, in both cases the most relevant (at w1) ¬�-world in M is w3,
which is uneliminated by the agent in w1, so K� is false at w1. ⇤

Facts 2 and 3 point to a dilemma. On the one hand, if we understand the RA
theory according to D-semantics, then the knowledge operator lacks even the
basic closure properties that Dretske wanted from a semi-penetrating operator,
contrary to the “trivial side” of his thesis. On the other hand, if we understand
the RA theory according to L-semantics, then the knowledge operator is a fully-
penetrating operator, contrary to the non-trivial side of Dretske’s thesis. It is
difficult to escape this dilemma while retaining something like Heller’s [18,17]
world-ordering picture with which we started before Definition 1. In [21], I pro-
pose a different way of developing the theory such that the knowledge operator
is semi-penetrating in Dretske’s sense, thereby avoiding the dilemma above.

Facts 2 and 3 also raise the question: what is the complete logic of knowledge
over RA models? Theorem 1, proven in [20,21], gives the answer. Interestingly,
the answer depends on whether we assume that each �

w

is total on its field W

w

(8u, v 2 W

w

: u �
w

v or v �
w

u), so that �
w

is a ranking of worlds in W

w

by their relevance. (In this case, we call the RA model itself “total.”) Following
the nomenclature of Chellas [6], E is the weakest of the classical modal systems
extending propositional logic with the rule RE, and ES1 . . .Sn

is the extension
of E with every instance of schemas S1 . . . Sn. The X axiom schema is new.

RE.
'$  

K'$ K 

T. K'! ' N. K>

C. K' ^K ! K(' ^  ) M. K(' ^  ) ! K' ^K X. K(' ^  ) ! K' _K 

Theorem 1 (Completeness).

1. The system EMCNT (KT) is sound and complete for C/L-semantics over

RA models.

2. (The Logic of Ranked Relevant Alternatives) The system ECNTX is sound

and complete for D-semantics over total RA models.

3. The system ECNT is sound and complete for D-semantics over RA models.



10

3 The Dynamics of Context

In this section, we extend our formalization to capture the contextualist Response
2 to Example 1 in §1. (It may be helpful to reread Response 2 as a reminder.)

In the framework of Lewis [24], the family � of relevance orderings in an RA
model may be thought of as a component of the conversational score. Changes
in this component of the conversational score, an aspect of what Lewis calls the
kinematics of score, correspond to transformations of RA models. We begin with
an RA model M representing what an agent counts as knowing relative to an
initial conversational context. If some change in the conversation makes the issue
of ' relevant, then corresponding to this change the model transforms from M
to M"'. In the new model, what the agent counts as knowing may be different.

For variety, we will define two types of operations on models, " ' and & '.
Roughly speaking, " ' changes the model so that the most relevant '-worlds in
M become among the most relevant worlds overall in M"'. By contrast, & '

changes the model so that any worlds at least as relevant as the most relevant
'-worlds in M become among the most relevant worlds overall in M&'. The
following definition makes these descriptions more precise. For convenience, in
this section we assume that each preorder �

w

is total on its field W

w

, but all of
the definitions and results can be modified to apply to the non-total case.

Definition 5 (RA Context Change). Given an RA model M = hW,_,�, V i,
define the models M"' =

⌦
W,_,�"'

, V

↵
and M&' =

⌦
W,_,�&'

, V

↵
such

that for all w, u, v 2 W :

1. if u 2 Min�
w

�
J'KM

�
[ Min�

w

(W ), then u �"'
w

v;
2. if u, v /2 Min�

w

�
J'KM

�
[ Min�

w

(W ), then u �"'
w

v iff u �
w

v;

and

3. if 9x 2 Min�
w

�
J'KM

�
such that u �

w

x, then u �&'

w

v;
4. if 8x 2 Min�

w

�
J'KM

�
, u 6�

w

x and v 6�
w

x, then u �&�

w

v iff u �
w

v.

In other words, for " ', the most relevant '-worlds according to �
w

become
among the most relevant worlds according to �"'

w

; the most relevant worlds
according to �

w

remain among the most relevant worlds according to �"'
w

; and
for all other worlds, �"'

w

agrees with �
w

. For & ', all worlds at least as relevant

as the most relevant '-worlds according to �
w

become among the most relevant
worlds according to �&'

w

; and for all other worlds, �&'

w

agrees with �
w

.

Which of these operations is most appropriate for modeling a given context
change is an interesting question, which I leave aside here. Other operations
could be defined as well, but these will suffice as examples of the general method.
Fig. 2 shows the application of either " x or & x (denoted +x) to the model M
for Example 1, the result of which is the same for both. Fig. 3 shows " x and & x

applied to a different initial model, N , in which case the results are different.
To describe the effect of these context change operations using our formal

language, we extend the language of Definition 2 with dynamic context change
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c

w1

'
w1

c

0

w2

�
w1 x

w3

�
w1 c, x

w4

M

c

w1

'
w1

c

0

w2

'
w1 x

w3

�
w1 c, x

w4

M+x

Fig. 2: result of context change by raising the possibility of x in Example 1

c

w1

�
w1 c

0

w2

�
w1 x

w3

�
w1 c, x

w4

N

c

w1

'
w1 x

w3

�
w1 c

0

w2

�
w1 c, x

w4

N "x

c

w1

'
w1

c

0

w2

'
w1 x

w3

�
w1 c, x

w4

N&x

Fig. 3: different results of context change by " x and & x

operators of the form [+'] for + 2 {",&}, in the style of dynamic epistemic logic
[11,2]. One can read [+'] as “after ' becomes relevant,  is the case” or “after
' is raised,  is the case” or “after context change by ',  is the case,” etc.

Definition 6 (Contextualist Epistemic Language). Let At = {p, q, r, . . . }
be a set of atomic sentences. The contextualist epistemic language is generated
as follows, where p 2 At:

' ::= p | ¬' | (' ^ ') | K' | [⇡]'
⇡ ::= " ' | & '.

We give the truth clauses for the operators [" '] and [& '] with the help of
Definition 5, using + to stand for either " or & in definitions applicable to both.

Definition 7 (Truth). The truth clause for the context change operator is:

M, w ✏ [+'] iff M+'

, w ✏  .
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In other words, “after context change by ',  is the case” is true at w in the
initial model M if and only if  is true at w in the new model M+'.

Having set up this contextualist machinery, there are a number of directions
to explore. Given the space available here, we will touch on two: first, a brief com-
parison between (non-contextualist) D-semantics and contextualist L-semantics;
second, a technical excursion in search of reduction axioms for context change.

3.1 D-Semantics vs. Contextualist L-Semantics

The following fact matches Lewis’s [25] view on closure and context from §1.

Fact 4 (Known Implication Cont.) According to D-semantics, closure un-
der known implication can fail. According to L-semantics, closure under known
implication always holds for a fixed context, but may fail across context changes:

1. 2
d

K' ^K('!  ) ! K 

2. ✏
l

K' ^K('!  ) ! K 

3. 2
l

K' ^K('!  ) ! [+¬ ]K 
4. 2

l

K'! [+¬ ](K('!  ) ! K )

Proof We have already noted part 1 and 2 in §2. For 3, its instance

Kc ^K(c ! ¬x) ! [+x]K¬x (1)

is false at M, w1 in Fig. 2. As we saw in §2, the antecedent is true at M, w1. To
determine whether M, w1 ✏

l

[+x]K¬x, by Definition 7 we must check whether
M+x

, w1 ✏
l

K¬x. Since in M+x there is a most relevant (at w1) world, w3,
which satisfies x and is not ruled out at w1, we have M+x

, w1 2
l

K¬x. There-
fore, M, w1 2

l

[+x]K¬x, so (1) is false at M, w1. It is also easy to check that
M+x

, w1 ✏ K(c ! ¬x), so the corresponding instance of 4 is false at M, w1. ⇤
We will use the next fact to generalize Fact 4 to all kinds of closure failure

(Fact 6), not only failures of closure under known implication.

Fact 5 (Relation of D- to Contextualist L-semantics) Given an RA model
M = hW,_,�, V i with w 2 W , for any propositional formula ',

M, w ✏
d

K' iff M, w ✏
l

[+¬']K'.
Proof For the case where + is ", by Definition 5,

Min�"¬'

w

(W ) = Min�
w

(W ) [ Min�
w

(J'KM), (2)

so

Min�"¬'

w

(W ) \ J'KM
"¬'

= (Min�
w

(W ) [ Min�
w

(J'KM)) \ J'KM
"¬'

. (3)

Since ' is propositional, by an obvious induction we have

J'KM
+¬'

= J'KM, (4)
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so from (3) we have

Min�"¬'

w

(W ) \ J'KM
"¬'

= (Min�
w

(W ) [ Min�
w

(J'KM)) \ J'KM

= Min�
w

(J'KM). (5)

It follows from (5) that

8v 2 Min�
w

(J'KM): w 6_ v (6)

is equivalent to
8v 2 Min�"¬'

w

(W ) \ J'KM
"¬'

: w 6_ v, (7)

which by Definition 4 means that M, w ✏
d

K' is equivalent to M"¬'

, w ✏
l

K',
which by Definition 7 is equivalent to M, w ✏

l

[" ¬']K'.
The proof for the case where + is & is similar. ⇤
Using Fact 5, we can now state a generalization of Fact 4 as follows.

Fact 6 (Inter-context Closure Failure) Let '1, . . . ,'n

and  be proposi-
tional formulas. Given an RA model M = hW,_,�, V i with w 2 W , if

M, w 2
d

K'1 ^ · · · ^K'

n

! K 

then
M, w 2

l

K'1 ^ · · · ^K'

n

! [+¬ ]K .
Proof Assume the first line. Since for any formula ', M, w ✏

d

K' implies
M, w ✏

l

K', we have M, w ✏
l

K'1 ^ · · · ^K'

n

. Since M, w 2
d

K , we have
M, w 2

l

[+¬ ]K by Fact 5, which gives the second line. ⇤
Most contextualists deny that closure fails in any of the ways allowed by

D-semantics. But Fact 6 shows that for every way in which closure fails for D-
semantics, there is a corresponding inter-context “closure failure” for L-semantics
when the context changes with the negation of the consequent of the closure
principle becoming relevant. According to some standard contextualist views,
asserting that the agent knows the consequent has just this effect on the context.
For example, according to DeRose [9], “When it’s asserted that S knows (or
doesn’t know) that P, then, if necessary, enlarge the sphere of epistemically
relevant worlds so that it at least includes the closest worlds in which P is false”
(37). According to Lewis [25], “No matter how far-fetched a certain possibility
may be, no matter how properly we might have ignored it in some other context,
if in this context we are not in fact ignoring it but attending to it, then for us now
it is a relevant alternative” (559). If such views of the shiftiness of context are
correct, then Fact 6 shows that contextualists who claim to “preserve closure”—
with respect to a fixed context—may not vindicate closure reasoning (reasoning
over time about an agent’s knowledge that applies closure principles to draw
conclusions) any more than those who allow failures of closure as in D-semantics.

Much more could be said about these conceptual issues (see [21]), but now we
will pursue a different line, checking our logical grip on the dynamics of context.
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3.2 Reduction Axioms for Context Change

In this section, we turn to a more technical topic. Our goal is to apply one of the
main ideas of dynamic epistemic logic, that of reduction axioms, to the picture of
context change presented in the previous sections. Roughly speaking, reduction
axioms are valid equivalences of the form [+�] $  

0, where the left-hand side
states that some  is true after the context change with �, while the right-hand
side gives an equivalent  

0 describing what is true before the context change. For
example, we can ask whether the agent counts as knowing ' after � becomes
relevant, i.e., is [+�]K' true? The reduction axioms will answer this question by
describing what must be true of the agent’s epistemic state before the context
change in order for the agent to count as knowing ' after the context change.

To obtain reduction axioms for context change that are valid over our RA
models, we will use a language more expressive than the epistemic language
used in the previous sections. Our new RA language will be capable of describ-
ing what is relevant at a world and what is ruled out at a world independently.
This additional expressive power will allow us to obtain reduction axioms us-
ing methods similar to those applied by van Benthem and Liu [4] to dynamic

epistemic preference logic (also see [3]), but with an important difference.
Van Benthem and Liu work with models with a single preorder over worlds

(for each agent), representing an agent’s preferences between worlds, and their
language contains an operator ⇤� used to quantify over all worlds that are better

than the current world according to the agent.7 In our setting, ⇤� would quantify
over all worlds that are more relevant. Using another operator ⇤_ to quantify
over all worlds that are uneliminated at the current world, we can try to write
a formula expressing that all of the most relevant ¬'-worlds are eliminated at
the current world. An equivalent statement is that for all uneliminated worlds v,
if v is a ¬'-world, then there is another ¬'-world that is strictly more relevant
than v. This is expressed by ⇤_(¬'! ⌃�¬'), where ⌃�

 := ¬⇤�¬ .
The problem with the above approach is that unlike the models of van Ben-

them and Liu (but like models for conditional logic and the general belief revi-

sion structures of [5]), our RA models include a preorder �
w

for each world w.
Hence if the operator ⇤� quantifies over all worlds that are more relevant than
the current world according to the relevance relation of the current world, then
⇤_(¬' ! ⌃�¬') will be true at w just in case for all worlds v uneliminated
at w, if v is a ¬'-world, then there is another ¬'-world that is strictly more
relevant than v according to �

v

. Yet this is not the desired truth condition.8
The desired truth condition is that for all worlds v uneliminated at w, if v is
a ¬'-world, then there is another ¬'-world that is strictly more relevant than
7 Van Benthem et al. [3] write this operator as ⇤<, since they take w � v to mean

that v is strictly better than w according to the agent. Since we take w � v to mean
that w is strictly more relevant than v, we write ⇤� for the operator that quantifies
over more relevant worlds. We will write ⇤� for the operator that quantifies over
worlds that are of equal or lesser relevance. We use the same � for the superscript of
the operator and for the relation in the model, trusting that no confusion will arise.

8 Since v is assumed to be minimal in �
v

, the condition would never be met.
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v according to �
w

. To capture this truth condition, we will use an approach
inspired by hybrid logic [1]. First, different modalities ⇤�

x , ⇤�
y , etc., will be

associated in a given model with different relevance relations �
w

, �
v

, etc., by an
assignment function g. Second, a binder # will be used to bind a world variable
x to the current world, so that the formula #x.⇤_(¬' ! ⌃�

x¬') will capture
the desired truth condition described above (cf. [23, §2.8] on the † operator).

In addition to the operator ⇤�
x that quantifies over all worlds more relevant

than the current world according to �
g(x), we will use an operator ⇤�

x that
quantifiers over all worlds whose relevance is equal to or lesser than that of the
current world according to �

g(x). The second operator is necessary for writing
reduction axioms for the context change operation &. Together the two types
of operators will also allow us to quantify over all worlds in the field of �

g(x),
W

g(x), with formulas of the form ⇤�
x

' ^ ⇤�
x

', which we will use in writing
reduction axioms for both of the context change operations, " and &.

Definition 8 (Dynamic & Static RA Languages). Let At = {p, q, r . . . } be
a set of atomic sentences and Var = {x, y, z, . . . } a set of variables. The dynamic

RA language is generated as follows, where p 2 At and x 2 Var:

' ::= p | ¬' | (' ^ ') | ⇤_
' | ⇤�

x

' | ⇤�
x

' | #x.' | [⇡]'
⇡ ::= " ' | & '.

Where R is �
x

, �
x

, or _, let ⌃R

' := ¬⇤R¬'; let R

x

stand for either �
x

or
�

x

in definitions that apply to both; and let us use + as before. Finally, let the
static RA language be the fragment of the dynamic RA language consisting of
those formulas that do not contain any context change operators [⇡].

The truth clauses are as one would expect from our description above, and
the clause for the context change operators is the same as Definition 7.

Definition 9 (Truth). Given an RA model M = hW,_,�, V i and an assign-
ment function g : Var ! W , we define M, g, w ✏ ' as follows (with propositional
cases as in Definition 3):

M, g, w ✏ ⇤_
' iff 8v 2 W : if w _ v then M, g, v ✏ ';

M, g, w ✏ ⇤R

x

' iff 8v 2 W : if wR
g(x)v then M, g, v ✏ ';

M, g, w ✏ [+�]' iff M+�

, g, w ✏ ';
M, g, w ✏ #x.' iff M, g

x

w

, w ✏ ',
where g

x

w

is such that g

x

w

(x) = w and g

x

w

(y) = g(y) for all y 6= x.

Hence the #x.' clause captures the idea of letting x stand for the current world
by changing the assignment g to one that maps x to w but is otherwise the same.

We now show how the epistemic language can be translated into the RA
language in two different ways, corresponding to D- and L-semantics.9 To sim-
plify the translation, let us assume for the moment that all of our RA models
M = hW,_,�, V i are universal in the sense that for all w 2 W , W

w

= W .
9 Note that since the translation of Definition 10 only requires a single variable x, for

our purposes here it would suffice to define the RA language such that |Var| = 1.
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Definition 10 (Translation). Let �
d

be a translation from the epistemic lan-
guage of Definition 2 to the static RA language of Definition 8 defined by:

�

d

(p) = p

�

d

(¬') = ¬�
d

(')

�

d

(' ^  ) = (�
d

(') ^ �
d

( ))

�

d

(K') = #x.⇤_(¬�
d

(') ! ⌃�
x¬�

d

(')).

Let �
l

be a translation analogous to �
d

but with

�

l

(K') =#x.⇤_(¬�
l

(') ! ⌃�
x>).

As explained at the beginning of this section, the idea of the �
d

translation is
that the truth clause for K' in D-semantics—stating that the most relevant
¬'-worlds are eliminated—is equivalent to the statement that for all worlds v

uneliminated at the current world w, if v is a ¬'-world, then there is another
¬'-world that is strictly more relevant than v according to �

w

. This is exactly
what �

d

(K') expresses. Similarly, the idea of the �
l

translation is that the truth
clause for K' in L-semantics—stating that among the most relevant worlds
overall, all ¬'-worlds are eliminated—is equivalent to the statement that for all
worlds v uneliminated at the current world w, if v is a ¬'-world, then there is
another world that is strictly more relevant than v according to �

w

, in which
case v is not among the most relevant worlds overall according to �

w

. This is
exactly what �

l

(K') expresses. The following proposition confirms these claims.

Proposition 1 (Simulation). For any RA model M = hW,_,�, V i, assign-
ment g : Var ! W , world w 2 W , and formula ' of the epistemic language:

M, w ✏
d

' iff M, g, w ✏ �
d

(');
M, w ✏

l

' iff M, g, w ✏ �
l

(').

Proof By induction on '. All of the cases are trivial except where ' is of the
form K . By Definition 10, we are to show

M, w ✏
d

K iff M, g, w ✏ #x.⇤_(¬�
d

(') ! ⌃�
x¬�

d

(')). (8)

By Definition 9, the rhs of (8) holds iff for all v 2 W , if w _ v, then

M, g

x

w

, v ✏ ¬�
d

( ) ! ⌃�
x¬�

d

( ). (9)

By Definition 9, (9) is equivalent to the disjunction of the following:

M, g

x

w

, v ✏ �
d

( ); (10)
9u 2 W : u �

g

x

w

(x) v and M, g

x

w

, u 2 �
d

( ). (11)

By the inductive hypothesis, (10) and (11) are respectively equivalent to

M, v ✏
d

 and (12)
9u 2 W : u �

w

v and M, u 2
d

 . (13)
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Assuming M is universal, the disjunction of (12) and (13) is equivalent to

v 62 Min�
w

(J K). (14)

Hence the rhs of (8) holds if and only if for all v 2 W , if w _ v, then (14) holds.
The rhs of this biconditional is equivalent to the lhs of (8), M, w ✏

d

K , by
Definition 3. The proof for the case of L-semantics is similar. ⇤

If we do not assume that RA models are universal, then we must modify the
translation of Definition 10 such that

�

0
d

(K') = #x.⇤_(¬�0
d

(') ! (⌃�
x¬�0

d

(') _⇤�
x?));

�

0
l

(K') = #x.⇤_(¬�0
l

(') ! (⌃�
x> _⇤�

x?)).

We leave it to the reader to verify that given the modified translation, Proposi-
tion 1 holds for RA models that are not necessarily universal.

We are now prepared to do what we set out to do at the beginning of this
section: give reduction axioms for the context change operations of Definition 5.
For the following proposition, let us define ⇤x

' := ⇤�
x

' ^⇤�
x

'.

Proposition 2 (RA Reduction). Given the following valid reduction axioms
and the rule of replacement of logical equivalents,10 any formula of the dynamic

RA language is equivalent to a formula of the static RA language:

[+�] p $ p; (15)
[+�]¬' $ ¬ [+�]'; (16)
[+�] (' ^  ) $ [+�]' ^ [+�] ; (17)
[+�] #x.' $ #x.[+�]'; (18)
[+�]⇤_

' $ ⇤_ [+�]'; (19)
[" �]⇤�

x

' $ ⇤�
x? _ (� ^⇤�

x¬�)
_
�
⇤�

x [" �]' ^⇤�
x((� ^⇤�

x¬�) ! [" �]')
�
; (20)

[" �]⇤�
x

' $
�
(⇤�

x? _ (� ^⇤�
x¬�)) ^⇤x[" �]'

�

_ ⇤�
x((� ^⇤�

x¬�) _ [" �]'); (21)

[& �]⇤�
x

' $ ⌃�
x(� ^⇤�

x¬�)
_
�
¬⌃�

x(� ^⇤�
x¬�) ^⇤�

x [& �]'
�
; (22)

[& �]⇤�
x

' $
�
⌃�

x(� ^⇤�
x¬�) ^⇤x[& �]'

�

_
�
¬⌃�

x(� ^⇤�
x¬�) ^⇤�

x [& �]'
�
. (23)

Proof Assuming the axioms are valid, the argument for the claim of the
proposition is straightforward. Each of the axioms drives the context change
10 Semantically, if ↵ $ � is valid, so is '(↵/p) $ '(�/p), where ( /p) indicates

substitution of  for p.
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operators [+�] inward until eventually these operators apply only to atomic
sentences p, at which point they can be eliminated altogether using (15). In case
we encounter something of the form [+�1][+�2]', we first reduce [+�2]' to an
equivalent static formula '0 and then use the replacement of logical equivalents
to obtain [+�1]'0, which we then reduce to an equivalent static formula '00, etc.

Let us now check the validity of (15) - (19) in turn. First, (15) is valid because
the context change operations of Definition 5 do not change the valuation V for
atomic sentences in the model. For (16), in the left-to-right direction we have
the following implications: M, w ✏ [+�]¬' ) M+�

, w ✏ ¬' ) M+�

, w 2 '

) M, w 2 [+�]' ) M, w ✏ ¬[+�]'. For the right-to-left direction of (16),
simply reverse the direction of the implications. It is also immediate from the
truth definitions that (17) is valid. For (18) and (19), [+�] and #x. commute and
[+�] and ⇤_ commute because the +� operations do not change the assignment
function g or the relation _ from the initial model M to the new model M+�.

For (20), the lhs expresses that after context change by " �, all worlds that
are more relevant than the current world w according to �"�

g(x) satisfy ':

{v 2 W | v �"�
g(x) w} ✓ J'KM

"�
. (24)

Case 1 : {v 2 W | v �"�
g(x) w} = ;. This implies (24) and is equivalent to

w 2 Min�"�
g(x)

(W ). (25)

By Definition 5 for ", (25) holds iff either

w 2 Min�
g(x)

(W ), (26)

which is equivalent to M, g, w ✏ ⇤�
x?, or else

w 2 Min�
g(x)

(J�KM), (27)

which is equivalent to M, g, w ✏ � ^ ⇤�
x¬�. This accounts for the first two

disjuncts on the rhs of (20).
Case 2 : {v 2 W | v �"�

g(x) w} 6= ;. In this case, by Definition 5 for ",

{v 2 W | v �"�
g(x) w} = {v 2 W | v �

g(x) w} [ Min�
g(x)

(J�KM). (28)

Hence (24) requires that

{v 2 W | v �
g(x) w} ✓ J'KM

"�
= J[" �]'KM, (29)

which is equivalent to M, g, w ✏ ⇤�
x [" �]', and

Min�
g(x)

(J�KM) ✓ J'KM
"�

= J[" �]'KM, (30)

which is equivalent to M, g, w ✏ ⇤x((� ^ ⇤�
x¬�) ! [" �]'). The conjunction

of ⇤�
x [" �]' and ⇤x((� ^⇤�

x¬�) ! [" �]') is equivalent to

⇤�
x [" �]' ^⇤�

x((� ^⇤�
x¬�) ! [" �]'), (31)
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which is the last disjunct on the rhs of (20).
For (21), what the lhs expresses about the current world w is

{v 2 W | w �"�
g(x) v} ✓ J'KM

"�
. (32)

Case 1 : {v 2 W | w �"�
g(x) v} = W

g(x). This is equivalent to (25), which
explains the first conjunct of the first disjunct on the rhs of (21). In this case,
(32) requires that

W

g(x) ✓ J'KM
"�

= J[" �]'KM, (33)

which is equivalent to M, g, w ✏ ⇤x[" �]'. This accounts for the second conjunct
of the first disjunct on the rhs of (21).

Case 2 : {v 2 W | w �"�
g(x) v} 6= W

g(x). In this case, by Definition 5 for ",

{v 2 W | w �"�
g(x) v} = {v 2 W | w �

g(x) v} \ Min�
g(x)

(J�KM). (34)

Hence (32) requires that

{v 2 W | w �
g(x) v} \ Min�

g(x)
(J�KM) ✓ J'KM

"�
= J[" �]'KM, (35)

which is equivalent to M, g, w ✏ ⇤�
x((� ^⇤�

x¬�) _ [" �]'). This explains the
second disjunct on the rhs of (21). The arguments for (22) - (23) are similar. ⇤

Given Propositions 1 and 2, if we combine the epistemic and RA languages
and interpret K' according to D-semantics (a similar point holds for L), then
we can write a reduction axiom for context change and knowledge as follows:

[+�]K $#x.⇤_(¬[+�]�
d

( ) ! ¬↵), (36)

where ↵ is the rhs of (20) if + is " (resp. of (22) if + is &) with ' := �

d

( ).
Here we have used the fact that ⌃�

x¬�
d

( ) is equivalent to ¬⇤�
x

�

d

( ), and
[+�]¬⇤�

x

�

d

( ) reduces to ¬[+�]⇤�
x

�

d

( ), which in turn reduces to ¬↵.

An important technical and conceptual issue raised by a result like Proposi-
tion 2 concerns the distinction between valid and schematically valid principles
of context change. Where a principle is schematically valid just in case all of its
substitution instances are valid [2, §3.12], the valid reduction principle [+�] p $ p

is clearly not schematically valid. Observe that [+�]Kp $ Kp is not valid; if it
were, there would be no epistemic dynamics. A more interesting example is the
valid principle ¬Kp ! [+�]¬Kp, which holds for our operations that make the
context more epistemically “demanding.” Observe that ¬K ! [+�]¬K is not
valid for all  ; it is possible to count as having some knowledge after the context
becomes more demanding that one did not count as having before. How can this
be? The answer is that this new knowledge may be knowledge of ignorance.11
This can be seen by substituting ¬Kp for  and either trying out model changes
11 This is easiest to understand in a multi-agent setting. (Note that all of our definitions

easily generalize to the multi-agent case where the modal operators in our language
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or using (36) to reduce ¬K¬Kp ! [+¬p]¬K¬Kp to a static principle that can
be seen to be invalid. These observations raise the question, which we leave open,
of what is the complete set of schematically valid principles of context change.

We leave as another open problem the task of finding an axiomatization of
the theory of RA models in the static RA language (or some static extension
thereof), which together with the reduction axioms of Proposition 2 would give
an axiomatization of the theory of RA models in the dynamic RA language to
go alongside the axiomatization in the epistemic language given by Theorem 1.

4 Conclusion

We have touched on two sides of RA theory, static (§2) and dynamic (§3), setting
up a formal framework to study both. The range of results obtainable in this
framework and its extensions, as well as their philosophical repercussions, are
explored in [21]. On the dynamic side, having formally defined context change
operations, we can see more clearly the systematic relations between theories
that accept closure failures (Response 1 in §1) and theories that try to explain
away closure failures in terms of context change (Response 2 in §1). On the static
side, by using models like our RA models, we can characterize the epistemic clo-
sure properties not only for RA theories, but also for a family of “subjunctivist”
theories that posit counterfactual conditions on knowledge, as well as the re-
lations between these theories [20]. Moreover, these formalizations do not only
help us to clarify the landscape of standard theories. They can also help us to
see beyond the standard theories to new and improved pictures of knowledge.
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