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Propositional quantification



Necessity and Possibility

Let’s start in the basic propositional unimodal language.

Let’s define what it is for a possibility x in a frame F = (S ,v) to settle a formula as

true under a valuation v for F as follows:

. . .

• F , x v �ϕ iff for all y ∈ S : F , y v ϕ;

• F , x v ♦ϕ iff for some y ∈ S : F , y v ϕ.

Theorem. The set of valid formulas is axiomatized by the classical modal logic S5.
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Propositional Quantifiers

Let’s now add propositional quantifiers (∀p, ∃p) to our language.

We define what it is for a possibility x in a frame F = (S ,v) to settle a formula as

true under a valuation v for F as follows:

. . .

• F , x v ∀pϕ iff for all valuations u ∼p v : F , x u ϕ;

• F , x v ∃pϕ iff ∀x ′ v x ∃x ′′ v x ′ ∃u ∼p v : F , x ′′ u ϕ.
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Propositional Quantifiers

Theorem (Holliday 2017)

The set of formulas valid according to the above semantics is axiomatized by the

logic S5Π of Bull and Fine, which adds to S5 the following axioms and rule for the

propositional quantifiers:

• ∀-distribution: ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ).

• ∀-instantiation: ∀pϕ→ ϕp
ψ where ψ is free for p in ϕ;

• Vacuous-∀: ϕ→ ∀pϕ where p is not free in ϕ.

• ∀-generalization: if ϕ is a theorem, so is ∀pϕ.

By contrast, if we restrict to possible world frames one obtains additional validities not

derivable in S5Π, such as:

∃q
(
q ∧ ∀p(�(q → p) ∨�(q → ¬p))

)
.
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Example

In the full infinite binary tree, no possibility satisfies

∃q
(
q ∧ ∀p(�(q → p) ∨�(q → ¬p))

)
,

since every proposition can be strengthened to a smaller one.

. .
. . . . . .

. . . .
. . .. .

.. . .. .
.

Where Q is any regular set, take any x ∈ Q and y @ x .

The set ↓y = {z ∈ S | z v y} is regular, and ↓y ( Q. 5



First-order quantification



From Boolean algebras to first-order logic

Let us now turn to possibility semantics for FOL.

Versions were developed by Johan van Benthem in 1981 (see his “Tales from an Old

Manuscript”) and Matthew Harrison-Trainor in 2016 (see his “First-order possibility

models and finitary completeness proofs”).

The version I will present is based on a section of my chapter on “Possibility

Semantics” for Research Trends in Contemporary Logic, eds. Fitting et al.

6

https://escholarship.org/uc/item/9ts1b228
https://escholarship.org/uc/item/9ts1b228


Choice-free model theory?

The traditional completeness theorem for first-order logic for uncountable languages

(Malcev 1936), stating that

every consistent set of first-order sentences has a Tarskian model ,

is not provable in ZF, as it is equivalent in ZF to the Boolean Prime Filter Theorem

(Henkin 1954) (for a proof, see, e.g., Bell and Slomson 1974, p. 104).

By contrast, we will prove in ZF that for arbitrary languages,

every consistent set of FO-sentences has a possibility model .
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Definition

A first-order possibility model for L is a tuple A = (S ,6,D,�, I ):

1. (S ,6) is a poset, and D is a nonempty set;

2. � assigns to s ∈ S an equivalence relation �s on D s.th.:

• persistence for �: if a �s b and s ′ > s, then a �s ′ b;

• refinability for �: if a 6�s b, then ∃s ′ > s ∀s ′′ > s ′ a 6�s ′′ b.

3. I assigns to each pair of an n-ary predicate R of L and s ∈ S a set I (R, s) ⊆ Dn

and to each n-ary function symbol f of L and s ∈ S a set I (f , s) ⊆ Dn+1 s. th.:

• persistence for R: if a ∈ I (R, s), s ′ > s, and a �s ′ b, then b ∈ I (R, s ′);

• refinability for R: if a 6∈ I (R, s), then ∃s ′ > s ∀s ′′ > s ′ a 6∈ I (R, s ′′);

• persistence for f : if a ∈ I (f , s), s ′ > s, and a �s ′ b, then b ∈ I (σ, s ′);

• quasi-functionality for f : if (a, b), (a, b′) ∈ I (f , s), then b �s b
′;

• definedness for f : ∀a ∈ Dn ∃s ′ > s, b ∈ D: (a, b) ∈ I (f , s).
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Definition

A model is everywhere defined (ED) if for each n-ary function symbol f of L, s ∈ S ,

and a ∈ Dn, there is b ∈ D: (a, b) ∈ I (f , s).

A Tarskian model is an ED first-order possibility model in which S contains only one

possibility s, and �s is the identity relation.

For simplicity, in the rest of this talk I focus on ED models.

Definition

A pointed model is a pair A, s of a possibility model A and possibility s in A.
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Definition

Given a first-order possibility model A = (S ,6,D,�, I ), s ∈ S , and variable

assignment g : Var(L)→ D, we define a function

J KA,s,g : Term(L)→ ℘(D) recursively as follows:

1. JxKA,s,g = {a ∈ D | a �s g(x)} for x ∈ Var(L);

2. for an n-ary function symbol f and t1, . . . , tn ∈ Term(L),

Jf (t1, . . . , tn)KA,s,g = {b ∈ D | ∃a1, . . . , an : ai ∈ JtiKA,s,g and

(a1, . . . , an, b) ∈ I (f , s)}.
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Lemma

For any ED model A = (S ,6,D,�, I ), s ∈ S , variable assignment g : Var(L)→ D,

t ∈ Term(L), and x ∈ Var(L):

1. JtKA,s,g is an �s -equivalence class;

2. if a ∈ JtKA,s,g and s ′ v s, then a ∈ JtKA,s ′,g .
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Definition

Given A = (S ,6,D,�, I ), define a function I� that assigns to each pair of an n-ary

predicate R of L and s ∈ S a set I�(R, s) ⊆ (D/�s)n by

(ξ1, . . . , ξn) ∈ I�(R, s) iff ∃a1, . . . , an : ai ∈ ξi and (a1, . . . , an) ∈ I (R, s).
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Definition

Given an ED model A = (S ,6,D,�, I ) for L, formula ϕ of L, s ∈ S , and variable

assignment g : Var(L)→ D, we define the satisfaction relation A, s �g ϕ:

1. A, s �g t1 = t2 iff Jt1KA,s,g = Jt2KA,s,g ;

2. A, s �g R(t1, . . . , tn) iff (Jt1KA,s,g , . . . , JtnKA,s,g ) ∈ I�(R, s);

3. A, s �g ¬ϕ iff for all s ′ > s, A, s ′ 2g ϕ;

4. A, s �g ϕ ∧ ψ iff A, s �g ϕ and A, s �g ψ;

5. A, s �g ∀xϕ iff for all a ∈ D, A, s �g [x :=a] ϕ.

A set Γ of formulas is satisfiable in A if there is some possibility s in A and variable

assignment g such that A, s �g ϕ for all ϕ ∈ Γ
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Lemma

For any model A = (S ,6,D,�, I ) for L, variable assignment g : Var→ D, and

formulas ϕ, ψ of L:

‖ϕ‖A,g := {s ∈ S | A, s �g ϕ} ∈ RO(S ,6)

‖¬ϕ‖A,g = ¬‖ϕ‖A,g
‖ϕ ∧ ψ‖A,g = ‖ϕ‖A,g ∧ ‖ϕ‖A,g
‖∀xϕ‖A,g =

∧
{‖ϕ‖A,g [x :=a] | a ∈ D}.

Theorem (Soundness)

For any set Γ of formulas and formula ϕ, if Γ ` ϕ, then for every pointed model A, s

and variable assignment g , if A, s �g ψ for all ψ ∈ Γ, then A, s �g ϕ.
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Henkinization

Definition

Given any first-order language L, we define a countable sequence of languages by:

L0 = L

Ln+1 = extension of Ln with new constant c∃xϕ

for each sentence ∃xϕ of Ln

Lω =
⋃
n∈ω

Ln.

Lemma

(ZF) For every consistent L-theory Γ, the set

H(Γ) = Cn(Γ ∪ {∃xϕ→ ϕx
c∃xϕ
| ∃xϕ a sentence of Lω})

is a consistent Henkinized Lω-theory. 15



Canonical model for L

Definition

The canonical model for L is the tuple AL = (S ,6,D,�, I ) where:

1. S is the set of all consistent L-theories;

2. Γ 6 Γ′ iff Γ ⊆ Γ′;

3. D is the set of closed terms of Lω;

4. t �Γ t ′ iff t = t ′ ∈ H(Γ);

5. for any n-ary predicate symbol R and Γ ∈ S ,

I (R, Γ) = {(t1, . . . , tn) | R(t1, . . . tn) ∈ H(Γ)};

6. for any n-ary function symbol f and Γ ∈ S ,

I (f , Γ) = {(t1, . . . , tn+1) | f (t1, . . . , tn) = tn+1 ∈ H(Γ)}.
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Choice-free completeness

Lemma

The canonical model for L is an ED first-order possibility model.

Lemma (Truth Lemma)

For every sentence ϕ of L and Γ ∈ S ,

AL, Γ � ϕ iff ϕ ∈ H(Γ).

Theorem (Strong Completeness)

(ZF) Every consistent L-theory Γ is satisfiable in the canonical first-order possibility

model for L.
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Choice-free model theory?

Hodges (Model Theory, p. 150): “I must add that I see little future for model theory

without the axiom of choice.”

Question: Could there be some interesting choice-free model theory using possibility

models instead of Tarskian models?

Partial answer already: Yes, see Guillaume Massas, “A Semi-Constructive Approach

to the Hyperreal Line.”
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