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Part 2 is based on Cariani’s “Modeling Future Indeterminacy in Possibility Semantics.”
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Possibility semantics for tense logic



Possibility Semantics for tense logic

Let us now read � as “it will always be the case that” and ♦ as “it will sometime be

the case that.”

We use possibility frames F = (S ,v,R) with accessibility relation R, but now. . .

Think of each x ∈ S as a stretch of time and v as the substrech relation (so an

instant, if there are any, is a v-minimal stretch).

Then (S ,v) is plausibly a separative poset (because if x 6v y , then there should be a

substretch of x that has no substretch in common with y).

In “Intervals and Tenses,” Roper argues that propositions about states and processes

correspond to regular open subsets of S as before.
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Possibility Semantics for tense logic

We still use possibility frames F = (S ,v,R) with accessibility relation R, but now. . .

Think of xRy as “x begins before y does.” Then xRy implies that if �ϕ is true

throughout x , then ϕ is true throughout y .

We define “ϕ is true throughout x” just as before, with:

• M, x 
 �ϕ iff ∀y ∈ R(x): M, y 
 ϕ;

• M, x 
 ♦ϕ iff ∀x ′ v x ∃y ′ ∈ R(x ′): M, y ′ 
 ϕ.
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Possibility Semantics for tense logic

We are thinking of xRy as “x begins before y does.”

Previous approaches to interval semantics took the relation

“x wholly precedes y” (notation: x > y) as primitive instead of R. Each approach has

some advantages and disadvantages.

(Advantage of R: simpler semantic clauses. Disadvantage: may need separate relations

for past and future modalities.)

But arguably, x > y iff every substretch of x begins before y does:

x > y iff ∀x ′ v x : x ′Ry .
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Possibility Semantics for tense logic

We are thinking of xRy as “x begins before y does.”

Under this interpretation of R, interaction conditions on v and R sufficient for

�A to be regular open whenever A is are all intuitively correct:

• if xRy and x v x ′, then x ′Ry ;

• if xRy and y ′ v y , then xRy ′;

• if xRy , then ∃x ′ v x ∀x ′′ v x ′: x ′′Ry (even stronger than before).

Additional conditions also make sense in the temporal context (e.g., R should be

irreflexive, transitive), and one can catalogue complete logics matching the extra

conditions as usual.
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Comparison with Roper’s “Intervals and Tenses”

Roper’s semantics is very similar, but he works with > (or a non-strict version thereof)

as a primitive instead of our R (though in his canonical model construction, he defines

x > y as ∀x ′ v x : x ′Ry , with R defined as we would define it).

The following, which yields persistence of modal formulas in possibility semantics,

holds for Q = R but not for Q =>:

• if xQy and x v x ′, then x ′Qy .

Thus, Roper builds the persistence of modal formulas into his semantic clauses:

• M, x 
 �ϕ iff ∀x ′ v x ∀y ∈ Q(x ′): M, y 
 ϕ;

• M, x 
 ♦ϕ iff ∀x ′ v x ∃x ′′ v x ′ ∃y ∈ Q(x ′′): M, y 
 ϕ.

Possibility semantics has one fewer quantifier in each clause.
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Intervals vs. instants



Consider the set S = {(a, b) | a, b ∈ Q, a < b} of all nonempty open intervals

(a, b) = {x ∈ Q | a < x < b} of rational numbers. Let v be the inclusion order:

(a, b) v (c, d) if (a, b) ⊆ (c , d). Thus, we obtain infinite sequences of refinements

from infinite chains of shrinking intervals:

( )

( )

( )

( )

..
.

Adopting the temporal interpretation of the poset (S ,v), we may think of a possibility

as settling that we are now temporally located in some stretch (or “period” or

“region”) of time. There is no possibility of a sharpest localization, i.e., no “instants.”

Finally, let (a, b)Rf (c , d) if a < c . Then the stated R-v interaction conditions hold. 7



Open future



present

x y

x ′

sea battle

y ′

no sea battle

Example 5.3.9 from “Possibility Semantics.” Solid lines are for refinement, dashed for

future accessibility, and dotted for past accessibility.

There are two possible refinements of the present, x and y , but we suppose that

neither is currently realized.

There are two associated future possibilities for what happens tomorrow: one (x ′) in

which there is sea battle, and one (y ′) in which there is no sea battle.
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present

x y

x ′

sea battle

y ′

no sea battle

Of course, M, present 
 ♦f sb ∨ ¬♦f sb. However, M, present 1 ♦f sb, since

y v present and M, y 
 ¬♦f sb, and M, present 1 ¬♦f sb, since x v present and

M, x 
 ♦f sb. Thus, the future is presently open.

Yet if there is a sea battle, so x ′ is realized, then the past will turn out to be x , in

which there would be a future sea battle, whereas if there is no sea battle, so y ′ is

realized, then the past will turn out to be y , in which there would be no future sea

battle. Come tomorrow, we might say, “the past is not what it used to be.”
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Adding a determinacy operator



Determinacy in the object language

We have seen we can talk in the metalanguage about the openness of the future—the

fact that the present did not settle ♦f sb and did not settle ¬♦f sb.

But what if we want to express this in the object language?

Cariani tackles this in “Modeling future indeterminacy in possibility semantics.”
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Determinacy in the object language

Cariani argues that we cannot add determinacy operators without moving to a

two-dimensional semantics, which works as follows (switching the order of his x , y):

• M, x , y 
 p iff y ∈ V (p);

• M, x , y 
 ¬ϕ iff ∀y ′ v y M, x , y ′ 1 ϕ;

• M, x , y 
 ϕ ∧ ψ iff M, x , y 
 ϕ and M, x , y 
 ψ;

• M, x , y 
 �ϕ iff for all y ′ ∈ R(y), M, x , y ′ 
 ϕ;

• M, x , y 
 Dϕ iff M, x , x 
 ϕ.

Finally, define M, x 
 ϕ to mean M, x , x 
 ϕ.
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present

x y

x ′

sea battle

y ′

no sea battle

Now observe that M, present 
 ¬D♦f sb:

M, present 
 ¬D♦f sb ⇔ M, present, present 
 ¬D♦f sb
⇔ ∀z v present,M, present, z 1 D♦f sb

⇔ ∀z v present,M, present, present 1 ♦f sb
⇔ M, present, present 1 ♦f sb

General fact: M, x 
 ¬Dϕ iff M, x 1 ϕ.
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Going outside RO(S ,v)

Let JϕKM = {x ∈ S | M, x 
 ϕ}.

For the language without D, JϕKM is always regular open.

But this is no longer true when D is allowed. Persistence and refinability fail:

• From M, x 
 ¬Dq and x ′ v x , we cannot conclude M, x ′ 
 ¬Dq;

• From M, x 1 Dq, we cannot conclude that there is an x ′ v x such that for all

x ′′ v x ′, M, x ′′ 1 Dq.

So D takes us outside RO(S ,v). But that’s okay if we weren’t expecting to get

classical logic with D in the language. What is the logic with D in the language?

Example of non-classicality: JqKM ⊆ JDqKM but J¬DqKM 6⊆ J¬qKM.

13



Comparison with inquisitive disjunction

Let’s compare the D operator with inquisitive disjunction, viewing inquisitive semantics

from the point of view of possibility semantics as in Section 8 of “Possibility frames

and forcing for modal logic” or Section 1 of “Inquisitive intuitionistic logic.”

We add to our language (without D) a binary connective

>

with the following clause:

• M, x 
 ϕ

>

ψ iff M, x 
 ϕ or M, x 
 ψ.

Could we take M, x 
 ϕ

> ¬ϕ to mean that it is determinate whether ϕ holds at x?
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present

x y

x ′

sea battle

y ′

no sea battle

Since M, present 1 ♦f sb and M, present 1 ¬♦f sb, we have

M, present 1 ♦f sb

> ¬♦f sb.

Thus, at present, it is not determinate whether there will be a sea battle.

But notice how the ‘not’ in ‘not determinate’ remains at the level of the

metalanguage—a point to which we’ll return shortly. . .
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Differences

Though

>

takes us outside RO(S ,v), since refinability fails for p

>

q, we still have

persistence, so we stay inside the Heyting algebra Down(S ,v) of all downsets.

This is why inquisitive logic is like a (super)intuitionistic logic, plus the special axiom

¬¬q → q for atomic sentences, since the semantics evaluates them in RO(S ,v).

Another big difference comes when trying to express indeterminacy : compare

¬Dq ∧ ¬D¬q and ¬(q > ¬q). Unlike the former, the latter is unsatisfiable! The move

to two-dimensional semantics for D allows the former to be satisfiable.
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