
A Uniform Logic of Information Dynamics⋆

Wesley H. Holliday, Tomohiro Hoshi, and Thomas F. Icard, III

Logical Dynamics Lab, Center for the Study of Language and Information
Cordura Hall, 210 Panama Street, Stanford, CA 94305

Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305

Abstract

Unlike standard modal logics, many dynamic epistemic logics are not closed under
uniform substitution. A distinction therefore arises between the logic and its substitu-
tion core, the set of formulas all of whose substitution instances are valid. The classic
example of a non-uniform dynamic epistemic logic is Public Announcement Logic
(PAL), and a well-known open problem is to axiomatize the substitution core of PAL.
In this paper we solve this problem for PAL over the class of all relational models with
infinitely many agents, PAL-Kω, as well as standard extensions thereof, e.g., PAL-Tω,
PAL-S4ω, and PAL-S5ω. We introduce a new Uniform Public Announcement Logic
(UPAL), prove completeness of a deductive system with respect to UPAL semantics,
and show that this system axiomatizes the substitution core of PAL.

Keywords: dynamic epistemic logic, Public Announcement Logic, schematic
validity, substitution core, uniform substitution

1 Introduction

One of the striking features of many of the dynamic epistemic logics
[28,19,13,9,4] studied in the last twenty years is the failure of closure under
uniform substitution in these systems. Given a valid principle of information
dynamics in such a system, uniformly substituting complex epistemic formulas
for atomic sentences in the principle may result in an invalid instance. Such
failures of closure under uniform substitution turn out to reveal insights into
the nature of information change [1,7,11,24,8]. They also raise the question:
what are the more robust principles of information dynamics that are valid in
all instances, that are schematically valid? Even for the simplest system of dy-
namic epistemic logic, Public Announcement Logic (PAL) [28], the answer has
been unknown. In van Benthem’s “Open Problems in Logical Dynamics” [3],
Question 1 is whether the set of schematic validities of PAL is axiomatizable. 1

⋆ In T. Bolander, T. Braüner, S. Ghilardi, and L. Moss, eds., Advances in Modal Logic,
Volume 9, 348-367, College Publications, 2012.
1 Dynamic epistemic logics are not the only non-uniform modal logics to have been studied.
Other examples include Buss’s [16] modal logic of “pure provability,” Åqvist’s [10] two-
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In this paper, we give an axiomatization of the set of schematic validities—or
substitution core—of PAL over the class of all relational models with infinitely
many agents, PAL-Kω, as well as standard extensions thereof, e.g., PAL-Tω,
PAL-S4ω, and PAL-S5ω. After reviewing the basics of PAL in §1.1, we intro-
duce the idea of Uniform Public Announcement Logic (UPAL) in §1.2, prove
completeness of a UPAL deductive system in §3 with respect to alternative se-
mantics introduced in §2, and show that it axiomatizes the substitution core
of PAL in §4. In §5, we demonstrate our techniques with examples, and in §6
we conclude by discussing extensions of these techniques to other logics.

Although much could be said about the conceptual significance of UPAL as a
uniform logic of information dynamics, here we only present the formal results.
For conceptual discussion of PAL, we refer the reader to the textbooks [9,4].
Our work here supports a theme of other recent work in dynamic epistemic
logic: despite its apparent simplicity, PAL and its variants prove to be a rich
source for mathematical investigation (see, e.g., [3,2,25,24,22,32,26,5,23,33]).

1.1 Review of PAL

We begin our review of PAL with the language we will use throughout.

Definition 1.1 For a set At of atomic sentences and a set Agt of agent symbols
with |Agt| = κ, the language Lκ

PAL is generated by the following grammar:

ϕ ::= ⊤ | p | ¬ϕ | (ϕ ∧ ϕ) | ✸aϕ | ⟨ϕ⟩ϕ,

where p ∈ At and a ∈ Agt. We define ✷aϕ as ¬✸a¬ϕ and [ϕ]ψ as ¬⟨ϕ⟩¬ψ.

• Sub(ϕ) is the set of subformulas of ϕ;

• At(ϕ) = At ∩ Sub(ϕ);

• Agt(ϕ) = {a ∈ Agt | ✸aψ ∈ Sub(ϕ) for some ψ ∈ Lκ
PAL};

• An(ϕ) = {χ ∈ Lκ
PAL | ⟨χ⟩ψ ∈ Sub(ϕ) for some ψ ∈ Lκ

PAL}.

We will be primarily concerned with the language Lω
PAL with infinitely many

agents, which leads to a more elegant treatment than Ln
PAL for some arbitrary

finite n. In §6 we will briefly discuss the single-agent and finite-agent cases.
We will consider two interpretations of Lκ

PAL, one now and one in §2. The
standard interpretation uses the following models and truth definition.

Definition 1.2 Models for PAL are tuples of the formM = ⟨W, {Ra}a∈Agt, V ⟩,
where W is a non-empty set, Ra is a binary relation on W , and V : At → P(W ).

dimensional modal logic (see [31]), Carnap’s [17] modal system for logical necessity (see
[12,30]), an epistemic-doxastic logic proposed by Halpern [21], and the full computation tree
logic CTL∗ (see [29]). Among propositional logics, inquisitive logic [27,18] is a non-uniform
example. In some of these cases, the schematically valid fragment—or substitution core—
turns out to be another known system. For example, the substitution core of Carnap’s system
C is S5 [30], and the substitution core of inquisitive logic is Medvedev Logic [18, §3.4].
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Definition 1.3 Given a PAL model M = ⟨W, {Ra}a∈Agt, V ⟩ with w ∈ W ,
ϕ,ψ ∈ Lκ

PAL, and p ∈ At, we define M, w ! ϕ as follows:

M, w ! ⊤;
M, w ! p iff w ∈ V (p);
M, w ! ¬ϕ iff M, w ! ϕ;
M, w ! ϕ ∧ ψ iff M, w ! ϕ and M, w ! ψ;
M, w ! ✸aϕ iff ∃v ∈ W : wRav and M, v ! ϕ;
M, w ! ⟨ϕ⟩ψ iff M, w ! ϕ and M|ϕ, w ! ψ,

where M|ϕ = ⟨W|ϕ, {Ra|ϕ
}a∈Agt, V|ϕ⟩ is the model such that

W|ϕ = {v ∈ W | M, v ! ϕ};
∀a ∈ Agt: Ra|ϕ

= Ra ∩ (W|ϕ ×W|ϕ);

∀p ∈ At: V|ϕ(p) = V (p) ∩W|ϕ.

We use the notation !ϕ"M = {v ∈ W | M, v ! ϕ}. For a class of models C,
ThLκ

PAL
(C) is the set of formulas of Lκ

PAL that are valid over C.

For the following statements, we use the standard nomenclature for normal
modal logics, e.g., K, T, S4, and S5 for the unimodal logics and Kκ, Tκ, S4κ,
and S5κ for their multimodal versions with |Agt| = κ (assume κ countable).
Let Mod(Lκ) be the class of all models of the logic Lκ, so Mod(Kκ) is the class
of all models, Mod(Tκ) is the class of models with reflexive Ra relations, etc.
We write Lκ for the Hilbert-style deductive system whose set of theorems is
Lκ, and for any deductive system S, we write ⊢S ϕ when ϕ is a theorem of S.

Theorem 1.4 (PAL Axiomatization [28]) Let PAL-Lκ be the system ex-
tending Lκ with the following rule and axioms: 2

i. (replacement)
ψ ↔ χ

ϕ(ψ/p) ↔ ϕ(χ/p)

ii. (atomic reduction) ⟨ϕ⟩p ↔ (ϕ ∧ p)

iii. (negation reduction) ⟨ϕ⟩¬ψ ↔ (ϕ ∧ ¬⟨ϕ⟩ψ)

iv. (conjunction reduction) ⟨ϕ⟩(ψ ∧ χ) ↔ (⟨ϕ⟩ψ ∧ ⟨ϕ⟩χ)

v. (diamond reduction) ⟨ϕ⟩✸aψ ↔ (ϕ ∧✸a⟨ϕ⟩ψ).

For all ϕ ∈ Lκ
PAL,

⊢PAL-Kκ ϕ iff ϕ ∈ ThLκ
PAL

(Mod(Kκ)).

The same result holds for Tκ/Tκ, S4κ/S4κ, and S5κ/S5κ in place of Kκ/Kκ.

2 If Lκ contains the rule of uniform substitution, then we must either restrict this rule so that
in PAL-Lκ we can only substitute into formulas ϕ with An(ϕ) = ∅, or remove the rule and add
for each axiom of Lκ all substitution instances of that axiom with formulas in Lκ

PAL. Either
way, we take the rules of modus ponens and ✷a-necessitation from Lκ to apply in PAL-Lκ
to all formulas. Finally, for ϕ,ψ ∈ Lκ

PAL and p ∈ At(ϕ), ϕ(ψ/p) is the formula obtained by
replacing all occurrences of p in ϕ by ψ. For alternative axiomatizations of PAL, see [32,33].
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Although we have taken diamond operators as primitive for convenience
in later sections, typically the PAL axiomatization is stated in terms of box
operators by replacing axiom schemas ii - v by the following: [ϕ]p ↔ (ϕ → p);
[ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ); [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ); [ϕ]✷aψ ↔ (ϕ → ✷a[ϕ]ψ).

1.2 Introduction to UPAL

As noted above, one of the striking features of PAL is that it is not closed
under uniform substitution. In the terminology of Goldblatt [20], PAL is not
a uniform modal logic. For example, the valid atomic reduction axiom has
invalid substitution instances, e.g., ⟨p⟩✷ap ↔ (p∧✷ap). Given this observation,
a distinction arises between PAL and its substitution core, defined as follows.

Definition 1.5 A substitution is any σ : At → Lκ
PAL; and (·)σ : Lκ

PAL → Lκ
PAL is

the extension such that (ϕ)σ is obtained from ϕ by replacing each p ∈ At(ϕ)
by σ(p) [14, Def. 1.18]. The substitution core of ThLκ

PAL
(C) is the set

{ϕ ∈ Lκ
PAL : (ϕ)

σ ∈ ThLκ
PAL

(C) for all substitutions σ}.

Formulas in the substitution core of ThLκ
PAL

(C) are schematically valid over C.

Examples of formulas that are in ThLκ
PAL

(Mod(Kκ)) but are not in the sub-
stitution core of ThLκ

PAL
(Mod(Kκ)) include the following (for κ ≥ 1): 3

[p]p ✷ap → [p]✷ap
[p]✷ap ✷ap → [p](p → ✷ap)
[p](p → ✷ap) ✷a(p → q) → (⟨q⟩✷ar → ⟨p⟩✷ar)
[p ∧ ¬✷ap]¬(p ∧ ¬✷ap) (⟨p⟩✷ar ∧ ⟨q⟩✷ar) → ⟨p ∨ q⟩✷ar.

We discuss the epistemic significance of such failures of uniformity in [23].
Burgess [15] explains the logical significance of uniformity as follows:

The standard aim of logicians at least from Russell onward has been to char-
acterize the class [of] all formulas all of whose instantiations are true. Thus,
though Russell was a logical atomist, when he endorsed p∨∼ p as [a] law
of logic, he did not mean to be committing himself only to the view that
the disjunction of any logically atomic statement with its negation is true,
but rather to be committing himself to the view that the disjunction of any
statement whatsoever with its negation is true . . . . This has remained the
standard employment of statement letters ever since, not only among Rus-
sell’s successors in the classical tradition, but also among the great majority
of formal logicians who have thought classical logic to be in need of ad-
ditions and/or amendments, including C. I. Lewis, the founder of modern
modal logic. With such an understanding of the role of statement letters, it
is clear that if A is a law of logic, and B is any substitution in A, then B
also is a law of logic . . . . Thus it is that the rule of substitution applies not

3 The first two principles in the second column are schematically valid over transitive single-
agent models, but not over all single-agent models or over transitive multi-agent models.
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only in classical logic, but in standard, Lewis-style modal logics (as well as in
intuitionistic, temporal, relevance, quantum, and other logics). None of this
is meant to deny that there may be circumstances where it is legitimate to
adopt some other understanding of the role of statement letters. If one does
so, however, it is indispensable to note the conceptual distinction, and highly
advisable to make a notational and terminological distinction. (147-148)

In PAL, an atomic sentence p has the same truth value at any pointed models
M, w and M|ϕ, w, whereas a formula containing a modal operator may have
different truth values at M, w and M|ϕ, w, which is why uniform substitution
does not preserve PAL-validity. Hence in PAL an atomic sentence cannot be
thought of as a propositional variable in the ordinary sense of something that
stands in for any proposition. By contrast, if we consider the substitution core
of PAL as a logic in its own right, for which semantics will be given in §2, then
we can think of the atomic sentences as genuine propositional variables.

The distinction between PAL and its substitution core leads to Question 1
in van Benthem’s list of “Open Problems in Logical Dynamics” [3]:

Question 1 ([2,3,4]) Is the substitution core of PAL axiomatizable?

To answer this question, we will introduce a new framework of Uniform Public
Announcement Logic (UPAL), which we use to prove the following result.

Theorem 1.6 (Axiomatization of the PAL Substitution Core)
Let UPAL-Lκ be the system extending Lκ with the following rules and axioms: 4

1. (uniformity)
ϕ

(ϕ)σ
for any substitution σ

2. (necessitation)
ϕ

[p]ϕ

3. (extensionality)
ϕ ↔ ψ

⟨ϕ⟩p ↔ ⟨ψ⟩p

4. (distribution) [p](q → r) → ([p]q → [p]r)

5. (p-seriality) p → ⟨p⟩⊤

6. (truthfulness) ⟨p⟩⊤ → p

7. (⊤-reflexivity) p → ⟨⊤⟩p

8. (functionality) ⟨p⟩q → [p]q

9. (pa-commutativity) ⟨p⟩✸aq → ✸a⟨p⟩q

10. (ap-commutativity) ✸a⟨p⟩q → [p]✸aq

11. (composition) ⟨p⟩⟨q⟩r ↔ ⟨⟨p⟩q⟩r.

4 As in PAL-Lκ, in UPAL-Lκ we take the rules of modus ponens and ✷a-necessitation from Lκ

to apply to all formulas in Lκ
PAL.
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For all ϕ ∈ Lω
PAL,

⊢UPAL-Kω ϕ iff ϕ is in the substitution core of ThLω
PAL

(Mod(Kω)).

The same result holds for Tω/Tω, S4ω/S4ω, and S5ω/S5ω in place of
Kω/Kω, with only minor adjustments to the proof (see note 5).

Theorem 1.7 (Axiomatization of the PAL Substitution Core cont.)

1. ⊢UPAL-Tω ϕ iff ϕ is in the substitution core of ThLω
PAL

(Mod(Tω));

2. ⊢UPAL-S4ω ϕ iff ϕ is in the substitution core of ThLω
PAL

(Mod(S4ω));

3. ⊢UPAL-S5ω ϕ iff ϕ is in the substitution core of ThLω
PAL

(Mod(S5ω)).

Unless the specific base system Lκ matters, we simply write ‘UPAL’ and
‘PAL’. It is easy to check that all the axioms of PAL except atomic reduction are
derivable in UPAL, and the rule of replacement is an admissible rule in UPAL.
Another system with the same theorems as UPAL, but presented in a format
closer to that of the typical box version of PAL, is the following (with ⊥ := ¬⊤):

I. (uniformity)
ϕ

(ϕ)σ
for any substitution σ

II. (RE)
ϕ ↔ ψ

[p]ϕ ↔ [p]ψ

III. ([ ]-extensionality)
ϕ ↔ ψ

[ϕ]p ↔ [ψ]p

IV. (N) [p]⊤

V. (⊤-reflexivity) [⊤]p → p

VI. (⊥-reduction) [p]⊥ ↔ ¬p

VII. (¬-reduction) [p]¬q ↔ (p → ¬[p]q)

VIII. (∧-reduction) [p](q ∧ r) ↔ ([p]q ∧ [p]r)

IX. (✷a-reduction) [p]✷aq ↔ (p → ✷a[p]q)

X. ([ ]-composition) [p][q]r ↔ [p ∧ [p]q]r.

We have formulated UPAL as in Theorem 1.6 to make clear the correspondence
between axioms and the semantic conditions in Definition 2.3 below, as well as
to make clear the specific properties used in the steps of our main proof.

2 Semantics for UPAL

In this section we introduce semantics for Uniform Public Announcement Logic,
for which the system of UPAL is shown to be sound and complete in §3.

Definition 2.1 Models for UPAL are tuples M of the form
⟨M, {Ra}a∈Agt, {Rϕ}ϕ∈Lκ

PAL
,V⟩, where M is a non-empty set, Ra and

Rϕ are binary relations on M , and V : At → P(M).



Holliday, Hoshi, and Icard 7

Unlike in the PAL truth definition, in the UPAL truth definition we treat
⟨ϕ⟩ like any other modal operator.

Definition 2.2 Given a UPAL model M = ⟨M, {Ra}a∈Agt, {Rϕ}ϕ∈Lκ
PAL

,V⟩
with w ∈ M , ϕ,ψ ∈ Lκ

PAL, and p ∈ At, we define M, w " ϕ as follows:

M, w " ⊤;
M, w " p iff w ∈ V(p);
M, w " ¬ϕ iff M, w " ϕ;
M, w " ϕ ∧ ψ iff M, w " ϕ and M, w " ψ;
M, w " ✸aϕ iff ∃v ∈ M : wRav and M, v " ϕ;
M, w " ⟨ϕ⟩ψ iff ∃v ∈ M : wRϕv and M, v " ψ.

We use the notation ∥ϕ∥M = {v ∈ M | M, v " ϕ}.

Instead of giving the ⟨ϕ⟩ operators a special truth clause, we ensure that
they behave in a PAL-like way by imposing constraints on the Rϕ relations
in Definition 2.3 below. Wang and Cao [33] have independently proposed a
semantics for PAL in this style, with respect to which they prove that PAL is
complete. The difference comes in the specific constraints for UPAL vs. PAL.

Definition 2.3 A UPAL model M = ⟨M, {Ra}a∈Agt, {Rϕ}ϕ∈Lκ
PAL

,V⟩ is legal
iff the following conditions hold for all ψ,χ ∈ Lκ

PAL, w, v ∈ M , and a ∈ Agt:

(extensionality) if ∥ψ∥M= ∥χ∥M, then Rψ = Rχ;

(ψ-seriality) if w ∈ ∥ψ∥M, then ∃v: wRψv;

(truthfulness) if wRψv, then w ∈ ∥ψ∥M;

(⊤-reflexivity) wR⊤w;

(functionality) if wRψv, then for all u ∈ M , wRψu implies u = v;

(ψa-commutativity) if wRψv and vRau, then ∃z: wRaz and zRψu;

(aψ-commutativity) if wRav, vRψu and w ∈ ∥ψ∥M,
then ∃z: wRψz and zRau;

(composition) R⟨ψ⟩χ = Rψ ◦Rχ.

In §4, we will also refer to weaker versions of the first and third conditions:

(extensionality for ϕ) if ψ,χ ∈ An(ϕ) ∪ {⊤} and ∥ψ∥M= ∥χ∥M,
then Rψ = Rχ;

(truthfulness for ϕ) if ψ ∈ An(ϕ) ∪ {⊤} and wRψv, then w ∈ ∥ψ∥M.

It is easy to see that each of the axioms of UPAL in Theorem 1.6 corresponds
to the condition of the same name written in boldface in Definition 2.3.

3 Completeness of UPAL

In this section, we take our first step toward proving Theorem 1.6 by proving:
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Theorem 3.1 (Soundness and Completeness) The system of UPAL-Kω
given in Theorem 1.6 is sound and complete for the class of legal UPAL models.

Soundness is straightforward. To prove completeness, we use the standard
canonical model argument.

Definition 3.2 The canonical model Mc = ⟨M c, {Rc
a}a∈Agt, {Rc

ϕ}ϕ∈Lκ
PAL

,Vc⟩
is defined as follows:

1. M c = {Γ | Γ is a maximally UPAL-Kω-consistent set};

2. ΓRc
a∆ iff ψ ∈ ∆ implies ✸aψ ∈ Γ;

3. ΓRc
ϕ∆ iff ψ ∈ ∆ implies ⟨ϕ⟩ψ ∈ Γ;

4. Vc(p) = {Γ ∈ M c | p ∈ Γ}.

The following fact, easily shown, will be used in the proof of Lemma 3.5.

Fact 3.3 For all Γ ∈ M c, ϕ ∈ Lκ
PAL, if ⟨ϕ⟩⊤ ∈ Γ, then {ψ | ⟨ϕ⟩ψ ∈ Γ} ∈ M c.

The proof of the truth lemma is completely standard [14, §4.2].

Lemma 3.4 (Truth) For all Γ ∈ M c and ϕ ∈ Lκ
PAL,

M
c,Γ " ϕ iff ϕ ∈ Γ.

To complete the proof of Theorem 3.1, we need only check the following.

Lemma 3.5 (Legality) Mc is a legal model.

Proof. Suppose ∥ϕ∥M
c

= ∥ψ∥M
c

, so by Lemma 3.4 and the properties of max-
imally consistent sets, ϕ ↔ ψ ∈ Γ for all Γ ∈ M c. Hence ⊢UPAL-Kω ϕ ↔ ψ,
for if ¬(ϕ ↔ ψ) is UPAL-Kω-consistent, then ¬(ϕ ↔ ψ) ∈ ∆ for some
∆ ∈ M c, contrary to what was just shown. It follows that for any α ∈ Lκ

PAL,
⊢UPAL-Kω ⟨ϕ⟩α ↔ ⟨ψ⟩α, given the extensionality and uniformity rules of UPAL-
Kω. Hence if Γ1Rc

ϕΓ2, then for all α ∈ Γ2, ⟨ϕ⟩α ∈ Γ1 and ⟨ψ⟩α ∈ Γ1 by the
consistency of Γ1, which means Γ1Rc

ψΓ2. The argument in the other direction
is the same, whence Rc

ϕ = Rc
ψ. M

c satisfies extensionality.
Suppose Γ1Rc

⟨ϕ⟩ψΓ2, so for all α ∈ Γ2, ⟨⟨ϕ⟩ψ⟩α ∈ Γ1. Hence ⟨ϕ⟩⟨ψ⟩α ∈ Γ1

given the composition axiom and uniformity rule of UPAL-Kω, so ⟨ϕ⟩⊤ ∈ Γ1 by
normal modal reasoning with the distribution axiom. It follows by Fact 3.3 and
Definition 3.2.3 that there is some Σ1 such that Γ1RϕΣ1 and ⟨ψ⟩α ∈ Σ1, and by
similar reasoning that there is some Σ2 such that Σ1RψΣ2 and α ∈ Σ2. Hence
Γ2 ⊆ Σ2, so Γ2 = Σ2 given that Γ2 is maximal. Therefore, Rc

⟨ϕ⟩ψ ⊆ Rc
ϕ ◦Rc

ψ.
The argument in the other direction is similar. Mc satisfies composition.

We leave the other legality conditions to the reader. ✷

4 Bridging UPAL and PAL

In this section, we show that UPAL axiomatizes the substitution core of PAL. It
is easy to check that all of the axioms of UPAL are PAL schematic validities, and
all of the rules of UPAL preserve schematic validity, so UPAL derives only PAL
schematic validities. To prove that UPAL derives all PAL schematic validities,
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we show that if ϕ is not derivable from UPAL, so by Theorem 3.1 there is a
legal UPAL model falsifying ϕ, then there is a substitution τ and a PAL model
falsifying (ϕ)τ , in which case ϕ is not schematically valid over PAL models.

Proposition 4.1 For any ϕ ∈ Lω
PAL, if there is a legal UPAL model M =

⟨M, {Ra}a∈Agt, {Rψ}ψ∈Lω
PAL

,V⟩ with w0 ∈ M such that M, w0 " ϕ, then there
is a PAL model N = ⟨N0, {Sa}a∈Agt, U⟩ with w0 ∈ N0 and a substitution τ
such that N , w0 ! (ϕ)τ .

Our first step in proving Proposition 4.1 is to show that we can reduce ϕ
to a certain simple form, which will help us in constructing the substitution τ .

Definition 4.2 The set of simple formulas is generated by the grammar

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | ✸aϕ | ⟨ϕ⟩p,

where p ∈ At and a ∈ Agt.

Proposition 4.3 For every ϕ ∈ Lκ
PAL, there is a simple formula ϕ′ ∈ Lκ

PAL that
is equivalent to ϕ over legal UPAL models (and all PAL models).

Proof. The proof is similar to the standard PAL reduction argument [9, §7.4],
only we do not perform atomic reduction steps, and we use the composition
axiom of UPAL to eliminate consecutive occurrences of dynamic operators. ✷

By Proposition 4.3, given that M is legal, we can assume that ϕ is sim-
ple. Before constructing N and τ , we show that our initial model M can be
transformed into an intermediate model N that satisfies a property (part 2 of
Lemma 4.4) that we will take advantage of in our proofs below. We will return
to the role of this property in relating UPAL to PAL in Example 5.2 and §6.

For what follows, we need some new notation. First, let

RAgt =
⋃

a∈Agt

Ra;

R∗ is the reflexive transitive closure of R; and R(w) = {v ∈ M | wRv}.

Lemma 4.4 For any legal model M = ⟨M, {Ra}a∈Agt, {Rϕ}ϕ∈Lω
PAL

,V⟩
with w0 ∈ M such that M, w0 " ϕ, there is a model N =
⟨N, {Sa}a∈Agt, {Sϕ}ϕ∈Lω

PAL
,U⟩ with w0 ∈ N such that

1. N, w0 " ϕ;

2. if α,β ∈ An(ϕ) ∪ {⊤} and ∥α∥N ̸= ∥β∥N, then

∥α∥N ∩S∗
Agt(w0) ̸= ∥β∥N ∩S∗

Agt(w0).

3. N satisfies ⊤-reflexivity, functionality, extensionality for ϕ and
truthfulness for ϕ.

Proof. Consider some α,β ∈ An(ϕ) ∪ {⊤} such that ∥α∥M ̸= ∥β∥M. Hence
there is some v ∈ M such that M, v " α ↔ β. Let M′ be exactly like M
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except that for some x ̸∈ Agt(ϕ), w0R′
xv.

5 Then it is easy to show that for all
ψ ∈ Sub(ϕ) and u ∈ M ,

M
′, u " ψ iff M, u " ψ.

Hence M′, w0 " ϕ and M′, v " α ↔ β. Then given w0R′
xv, we have

∥α∥M
′

∩R′∗
Agt(w0) ̸= ∥β∥M

′

∩R′∗
Agt(w0).

Finally, one can check that M′ satisfies ⊤-reflexivity, functionality, exten-
sionality for ϕ and truthfulness for ϕ by the construction. By repeating
this procedure, starting now with M′, for each of the finitely many α and β as
described above, one obtains a model N as described in Lemma 4.4 ✷

Obtaining N from M as in Lemma 4.4, we now define our PAL model
N = ⟨N0, {Sa}a∈Agt, U⟩. Let N0 = S∗

Agt(w0); for some z ̸∈ Agt(ϕ), let Sz be
the universal relation on N0; and for each a ∈ Agt with a ̸= z, let Sa be the
restriction of Sa to N0. We will define the valuation U after constructing the
substitution τ . The following facts will be used in the proof of Lemma 4.8.

Fact 4.5

1. For all a ∈ Agt and w ∈ N0, Sa(w) = Sa(w).

2. if ∥α∥N ∩N0 = ∥β∥N ∩N0, then for all u ∈ N0,

N, u " ⟨α⟩χ iff N, u " ⟨β⟩χ.

Proof. Part 1 is obvious. For part 2, if ∥α∥N ∩N0 = ∥β∥N ∩N0, then ∥α∥N=
∥β∥N by Lemma 4.4.2, so Sα = Sβ by Lemma 4.4.3 (extensionality for ϕ).✷

Remark 4.6 There is another way of transforming the UPAL model M =
⟨M, {Ra}a∈Agt, {Rϕ}ϕ∈Lω

PAL
,V⟩ into a PAL model N sufficient for our purposes.

First, let N = ⟨N, {Sa}a∈Agt, {Sϕ}ϕ∈Lω
PAL

,U⟩ be exactly like M except that for
some z ̸∈ Agt(ϕ), Sz is the universal relation on N , and observe that N satisfies
the conditions of Lemma 4.4. Second, take N = ⟨N0, {Sa}a∈Agt, U⟩ such that
N0 = N , Sa = Sa, and U is defined as below, and observe that Fact 4.5 holds.
Then the proof can proceed as below. The difference is that this approach takes
the domain of the PAL model to be the entire domain of the UPAL model N,
with Sz as the universal relation on this entire domain, whereas our approach
takes the domain of the PAL model to be just that of the “epistemic submodel”
generated by w0 in N, S∗

Agt(w0), with Sz as the universal relation on this set.
We prefer the latter approach because it allows us to work with smaller PAL
models when we carry out the construction with concrete examples as in §5.

5 As noted after Theorem 1.6, we can modify our proof for other models classes. For example,
for the class of models with equivalence relations, in this step we can define R′

x to be the
smallest equivalence relation extending Rx such that w0R′

xv. Note that since α,β ∈ An(ϕ)∪
{⊤} and x ̸∈ Agt(ϕ), no matter how we define R′

x, the following claim in the text still holds.
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To construct τ(p) for p ∈ At(ϕ), let B1, . . . , Bm be the sequence of all Bi

such that ⟨Bi⟩p ∈ Sub(ϕ), and let B0 := ⊤. For 0 ≤ i, j ≤ m, if ∥Bi∥N ∩N0 =
∥Bj∥N ∩N0, delete one of Bi or Bj from the list (but never B0), until there is
no such pair. Call the resulting sequence A0, . . . , An, and define

s(i) = {j | 0 ≤ j ≤ n and ∥Aj∥
N ∩N0 # ∥Ai∥

N ∩N0}.

Extend the language with new variables p0, . . . , pn and a0, . . . , an, and define
τ(p) = γ0 ∧ · · · ∧ γn such that

γi := (✷zai ∧
∧

j∈s(i)

¬✷zaj) → pi.

Having extended the language for each p ∈ At(ϕ), define the valuation U for
N0 such that for each p ∈ At(ϕ), U(p) = U(p) ∩N0, and for the new variables:

(a) U(pi) = {w ∈ N0 | ∃u: wSAi
u and u ∈ U(p)};

(b) U(ai) = ∥Ai∥N ∩N0.

Hence:

(a) !pi"N = {w ∈ N0 | ∃u: wSAi
u and u ∈ U(p)};

(b) !ai"N = ∥Ai∥N ∩N0.

Note that it follows from (a) and the UPAL truth definition that

(c) !pi"N = ∥⟨Ai⟩p∥N ∩N0.

Using these facts, we will show that N, w0 " ϕ implies N , w0 ! τ(ϕ).

Lemma 4.7 For all 0 ≤ i ≤ n,

!τ(p)"N|ai = !pi"
N .

Proof. We first show that for 0 ≤ i, j ≤ n, i ̸= j:

(i) !γi"
N|ai = !pi"

N|ai ;

(ii) !γj"
N|ai = !ai"

N|ai (= N0|ai
).

For (i), we claim that

!✷zai ∧
∧

k∈s(i)

¬✷zak"
N|ai = N0|ai

.

Since ai is atomic, !✷zai"
N|ai = N0|ai

. By definition of the s function and (b),

for all k ∈ s(i), !ak"N # !ai"N , so !¬✷zak"
N|ai = N0|ai

. Hence the claimed

equation holds, so !γi"
N|ai = !pi"

N|ai given the structure of γi.
For (ii), we claim that for j ̸= i,

!✷zaj ∧
∧

k∈s(j)

¬✷zak"
N|ai = ∅.
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By construction of the sequence A0, . . . , An for p and (b), !aj"N ̸= !ai"N .
Hence if not !ai"N # !aj"N , then !ai"N ̸⊆ !aj"N , so !✷zaj"

N|ai = ∅ because
Sz is the universal relation on N0. If !ai"N # !aj"N , then by (b) and the
definition of s, i ∈ s(j); since ai is atomic, !¬✷zai"

N|ai = ∅. In either case the
claimed equation holds, so !γj"

N|ai = N0|ai
given the structure of γj .

Given the construction of τ , (i) and (ii) imply:

!τ(p)"N|ai = !γi"
N|ai ∩

⋂

j ̸=i

!γj"
N|ai = !pi"

N|ai ∩ !ai"
N|ai = !pi"

N ,

where the last equality holds because !pi"N ⊆ !ai"N , which follows from (a),
(b), and the fact that N satisfies truthfulness for ϕ. ✷

We now establish the connection between the UPAL model N on the one
hand and the PAL model N and substitution τ on the other.

Lemma 4.8 For all simple subformulas χ of ϕ,

!(χ)τ "N = ∥χ∥N ∩N0.

Proof. By induction on χ. For the base case, we must show !(p)τ "N =
∥p∥N ∩N0 for p ∈ At(ϕ). By construction of the sequence A0, . . . , An for p,
A0 = ⊤, so ∥A0∥N∩N0 = N0. Then by (b), !a0"N = N0, and hence

!(p)τ "N = !(p)τ "N|a0

= !p0"N by Lemma 4.7
= {w ∈ N0 | ∃u : wSA0u and u ∈ U(p)} by (a)
= {w ∈ N0 | w ∈ U(p)} by ⊤-reflexivity

and functionality
= ∥p∥N ∩N0.

The boolean cases are straightforward. Next, we must show !(✷aϕ)τ "N =
∥✷aϕ∥N ∩N0. For the inductive hypothesis, !(ϕ)τ "N = ∥ϕ∥N ∩N0, so

!(✷aϕ)τ "N = !✷a(ϕ)τ "N

= {w ∈ N0 | Sa(w) ⊆ !(ϕ)τ "N }
= {w ∈ N0 | Sa(w) ⊆ ∥ϕ∥N ∩N0}
= {w ∈ N0 | Sa(w) ⊆ ∥ϕ∥N} given Sa ⊆ N0 ×N0

= {w ∈ N0 | Sa(w) ⊆ ∥ϕ∥N} by Fact 4.5.1
= ∥✷aϕ∥N ∩N0.

Finally, we must show !(⟨Bi⟩p)τ "N = ∥⟨Bi⟩p∥N ∩N0. For the inductive hy-
pothesis, !(Bi)τ "N = ∥Bi∥N ∩N0. By construction of the sequence A0, . . . , An

for p ∈ At(ϕ), there is some Aj such that

(⋆) ∥Bi∥
N ∩N0 = ∥Aj∥

N ∩N0.

Therefore,
!(Bi)τ "N = ∥Aj∥N ∩N0

= !aj"N by (b),
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and hence

!(⟨Bi⟩p)τ "N = !⟨(Bi)τ ⟩(p)τ "N

= !⟨aj⟩(p)τ "N

= !(p)τ "N|aj

= !pj"N by Lemma 4.7
= ∥⟨Aj⟩p∥N ∩N0 by (c)
= ∥⟨Bi⟩p∥N ∩N0 given (⋆) and Fact 4.5.2.

The proof by induction is complete. ✷

With the following fact, we complete the proof of Proposition 4.1.

Fact 4.9 N , w0 ! (ϕ)τ .

Proof. Immediate from Lemma 4.8 given N, w0 " ϕ. ✷

5 Examples

In this section, we work out two examples illustrating how the techniques
of §4 allow us to find, for any formula ϕ that is valid but not schematically
valid in PAL, a PAL model that falsifies a substitution instance of ϕ. The
proof in §4 shows that all we need to do is find a legal UPAL model falsifying
ϕ. However, since legal UPAL models are generally large, we would like to
instead find a small UPAL model falsifying ϕ, from which we can read off a
PAL model that falsifies a substitution instance of ϕ. In fact, we can always
do so provided that the model satisfies a weaker condition than legality. For
a given ϕ ∈ Lκ

PAL, we say that a UPAL model M is ϕ-legal iff it satisfies
all of the legality conditions of Definition 2.3 when we replace ψ-seriality with:

(ψ-seriality for ϕ) if ψ ∈ An(ϕ) ∪ {⊤} and w ∈ ∥ψ∥M,
then ∃v: wRψv.

Hence in a ϕ-legal model, we can let all of the infinitely many Rψ rela-
tions irrelevant to ϕ be empty, which makes constructing ϕ-legal models easier.
With this new notion, we can state a simple method for finding a PAL model
that falsifies a substitution instance of the non-schematically valid ϕ:

Step 1. Transform ϕ into an equivalent simple formula ϕ′.

Step 2. Find a ϕ′-legal pointed UPAL model M, w0 such that M, w0 "
ϕ′.

Step 3. Obtain N and τ from M, w0 as in §4 so that N , w0 ! (ϕ′)τ .

Since ϕ ↔ ϕ′ is schematically valid in PAL, we have N , w ! (ϕ)τ , as desired.
The key to this method is that the construction in §4 also establishes the
following variant of Proposition 4.1:

Proposition 5.1 For any simple ϕ ∈ Lω
PAL, if there is a ϕ-legal UPAL model

M = ⟨M, {Ra}a∈Agt, {Rψ}ψ∈Lω
PAL

,V⟩ with w0 ∈ M such that M, w0 " ϕ, then
there is a PAL model N = ⟨N0, {Sa}a∈Agt, U⟩ with w0 ∈ N0 and a substitution
τ such that N , w0 ! (ϕ)τ .
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This proposition holds because if ϕ is already simple, then the only prop-
erties of M used in the proof of Fact 4.9 are ⊤-reflexivity, functionality,
extensionality for ϕ and truthfulness for ϕ, which are part of ϕ-legality.

Finally, if ϕ does not contain any occurrence of a dynamic operator in the
scope of any other, then we can simply skip Step 1 and do Steps 2 and 3 for ϕ
itself. One can check that the construction in §4 works not only with a simple
formula, but more generally with any formula with the scope restriction.

Example 5.2 Consider the PAL-valid formula ϕ := [p]p, which is already
simple. Let us try to falsify ϕ in a ϕ-legal UPAL model. The obvious
first try is M in Fig. 1, which is indeed a ϕ-legal UPAL model, in which
all Ra relations are empty. (We simplify the diagrams by omitting all re-
flexive R⊤ loops.) However, M has an un-PAL-like property: although
∥⊤∥M ∩R∗

Agt(w0) = ∥p∥M ∩R∗
Agt(w0), we have w0R⊤w0 but not w0Rpw0. (See

§6 for why this is un-PAL-like.) To eliminate this property, we modify M to
N = ⟨N, {Sa}a∈Agt, {Sψ}ψ∈Lω

PAL
,U⟩ in Fig. 1 as in Lemma 4.4. 6 Next, follow-

ing the procedure in §4, we obtain the PAL model N = ⟨N0, {Sa}a∈Agt, U⟩ in
Fig. 1 and the substitution τ given below.

M

x0

pw0

Rp

N

x0

pw0 w1

Sp

Sz

N

pw0

pw0

p0, a0, a1

w1

a0
Sz

N|τ(p)

p0, a0, a1

Fig. 1. UPAL and PAL Models for Example 5.2

Where A0 := ⊤, A1 := p, and a0, a1, p0, and p1 are the new atoms, we
define the valuation U in N such that:

U(a0) = ∥A0∥N ∩N0 = {w0, w1};

U(a1) = ∥A1∥N ∩N0 = {w0};

U(p0) = {w ∈ N0 | ∃u: wSA0u and u ∈ U(p)} = {w0};

U(p1) = {w ∈ N0 | ∃u: wSA1u and u ∈ U(p)} = ∅.

Defining the function s such that

s(i) = {j | 0 ≤ j ≤ n and ∥Aj∥
N ∩N0 # ∥Ai∥

N ∩N0},

6 In fact, the construction of Lemma 4.4 would connect w0 to x0 by Rz , but note that we
can always connect w0 to a new point falsifying α ↔ β (in this case, ⊤ ↔ p) instead.
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we have s(0) = {1} and s(1) = ∅. Defining τ(p) = γ0 ∧ · · · ∧ γn such that

γi := (✷zai ∧
∧

j∈s(i)

¬✷zaj) → pi,

we have
τ(p) = ((✷za0 ∧ ¬✷za1) → p0) ∧ (✷za1 → p1).

Observe:

!(✷za0 ∧ ¬✷za1) → p0"N = {w0};

!✷za1 → p1"N = {w0, w1};

!τ(p)"N = {w0}.

Hence N|τ(p) is the model displayed in the upper-right in Fig. 1. Observe:

!(✷za0 ∧ ¬✷za1) → p0"N|τ(p) = {w0};

!✷za1 → p1"N|τ(p) = ∅;

!τ(p)"N|τ(p) = ∅.

Hence N , w0 ! ([p]p)τ , so our starting formula ϕ is not schematically valid over
PAL models.

Example 5.3 Consider the PAL-valid formula ϕ := [p ∧ ¬✷bp]¬(p ∧ ¬✷bp). 7

Let us try to falsify ϕ in a ϕ-legal UPAL model. The obvious first try
is the model A in Fig. 2. However, A is not ϕ-legal, since it vio-
lates ψb-commutativity for ψ := p ∧ ¬✷bp. By modifying A to N =
⟨N, {Sa}a∈Agt, {Sψ}ψ∈Lω

PAL
,U⟩ in Fig. 2, we obtain a ϕ-legal UPAL model with

N, w0 " ϕ. (In this case, the transformation of Lemma 4.4 is uncecessary,
since the condition of Lemma 4.4.2 is already satisfied by N.) Following the
procedure of §4, we obtain the PAL model N = ⟨N0, {Sa}a∈Agt, U⟩ in Fig. 3
and the substitution τ given below.

Where A0 := ⊤, A1 := p ∧ ¬✷bp, and a0, a1, p0, and p1 are the new atoms,
we define the valuation U in N such that:

U(a0) = ∥A0∥N ∩N0 = {w0, w1, w2};

U(a1) = ∥A1∥N ∩N0 = {w0, w1};

U(p0) = {w ∈ N0 | ∃u: wSA0u and u ∈ U(p)} = {w0, w1};

U(p1) = {w ∈ N0 | ∃u: wSA1u and u ∈ U(p)} = {w0}.

Defining the function s as before, we have s(0) = {1} and s(1) = ∅. Since this
is the same s as in Example 5.2, the substitution is also the same:

τ(p) = ((✷za0 ∧ ¬✷za1) → p0) ∧ (✷za1 → p1).

7 Here we could transform ϕ := [p ∧ ¬✷bp]¬(p ∧ ¬✷bp) into the simple

ϕ′ := (p ∧ ¬✷bp) → ¬([p ∧ ¬✷bp]p ∧ ((p ∧ ¬✷bp) → ¬((p ∧ ¬✷bp) → ✷b[p ∧ ¬✷bp]p))),

but as noted before Example 5.2, if ϕ does not contain any occurrence of a dynamic operator
in the scope of any other, then we can skip Step 1 and do Steps 2 and 3 for ϕ itself.
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A

px0 x1

pw0 w1

Rp∧¬✷bp

Rb

N

px0 x1

pw0 w2

p w1

Sp∧¬✷bp

Sb

Fig. 2. UPAL Models for Example 5.3

Note that since the construction of N from N is such that Sz = Sb, we can
simply take ✷z to be ✷b in τ(p), so that Agt((ϕ)τ ) = Agt(ϕ) = {b}.

N

pw0 w2

p w1

p0, a0, a1

p0, p1, a0, a1 a0

Sz = Sb

N|(p∧¬✷bp)τ

pw0

p w1

p0, a0, a1

p0, p1, a0, a1

Sz = Sb

Fig. 3. PAL Models for Example 5.3

Observe:

!(✷za0 ∧ ¬✷za1) → p0"N = {w0, w1};

!✷za1 → p1"N = {w0, w1, w2};

!τ(p)"N = {w0, w1};

!τ(p) ∧ ¬✷bτ(p)"N = {w0, w1}.

Hence N|(p∧¬✷bp)τ is the model displayed on the right in Fig. 3. Observe:

!(✷za0 ∧ ¬✷za1) → p0"
N|(p∧¬✷bp)

τ = {w0, w1};

!✷za1 → p1"
N|(p∧¬✷bp)

τ = {w0};
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!τ(p)"N|(p∧¬✷bp)
τ = {w0};

!τ(p) ∧ ¬✷bτ(p)"
N|(p∧¬✷bp)

τ = {w0}.

Hence N , w0 ! ([p ∧ ¬✷bp]¬(p ∧ ¬✷bp))τ , so our starting formula ϕ is not
schematically valid over PAL models.

We invite the reader to work out other examples using UPAL, starting from
the other valid but not schematically valid PAL principles mentioned in §1.2.

6 Discussion

In this paper, we have shown that UPAL axiomatizes the substitution core
of PAL with infinitely many agents. In this final section, we briefly discuss
the axiomatization question for the single-agent and finite-agent cases. For
a given language and class of models, the key question is how close we can
come to expressing that two formulas are co-extensional in the epistemic
submodel generated by the current point. For example, this condition is
expressed by the formula ✷+

a (ϕ ↔ ψ) (where ✷+
a α := α∧✷aα) in single-agent

PAL over transitive models. In this case, we get a new schematic validity in PAL:

(inner extensionality) ✷+
a (ϕ ↔ ψ) → (⟨ϕ⟩α ↔ ⟨ψ⟩α).

The corresponding legality condition for UPAL models is:

(inner extensionality) if ∥ϕ∥M ∩Ra(w) = ∥ψ∥M ∩Ra(w),
then wRϕv iff wRψv,

which does not follow from any of the other legality conditions.
For multiple agents, we cannot in general express the co-extensionality

of two formulas in the epistemic submodel generated by the current point;
however, if we allow our models to be non-serial, then we do get related
schematic validities for the single and finite-agent cases that are not derivable
in UPAL-Kn (where the antecedent can be written using ✷a operators and ⊥): 8

(FPE) “all RAgt-paths from the current point are of length ≤ n” →

(En(ϕ ↔ ψ) → (⟨ϕ⟩α ↔ ⟨ψ⟩α)),

where
E0α := α ∧

∧

a∈Agt

✷aα and Enα := α ∧ E0En−1α.

The corresponding legality condition for UPAL is:

(FPE) if R∗
Agt(w) is path-finite and ∥ϕ∥M ∩R∗

Agt(w) = ∥ψ∥M ∩R∗
Agt(w),

then wRϕv iff wRψv,

8 The (FPE) axioms are also schematically valid over serial models, because the antecedent
is always false, but then they are also derivable using the seriality axiom ✸a⊤.
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where R∗
Agt(w) is path-finite just in case every RAgt-path from w ends in a

dead-end point in finitely many steps. This shows why the axiomatization of
the substitution core of PAL-Kω is more elegant than that of PAL-Kn: with
infinitely many agents we cannot express the “everybody knows” modality E,
so we do not need to add to UPAL the infinitely many FPE axioms.

Finally, if we consider PAL with the standard common knowledge operator
C, then we can express co-extensionality in the generated epistemic submodel
using the formula C(ϕ ↔ ψ), in which case we get the new schematic validity

(common extensionality) C(ϕ ↔ ψ) → (⟨ϕ⟩α ↔ ⟨ψ⟩α).

The corresponding legality condition in UPAL is:

(common extensionality) if ∥ϕ∥M ∩R∗
Agt(w) = ∥ψ∥M ∩R∗

Agt(w),
then wRϕv iff wRψv.

We leave it to future work to give analyses for the above languages analogous
to the analysis we have given here for Lω

PAL. A natural next step is to axiomatize
the substitution core of the system of PAL-RC [6] with relativized common
knowledge. Relativized common knowledge C(ϕ,ψ) is interpreted in UPAL
models exactly as in PAL models. We conjecture that UPAL together with the
relativized common knowledge reduction axiom ⟨p⟩C(q, r) ↔ C(⟨p⟩q, ⟨p⟩r), the
common extensionality axiom above, and the appropriate base logic (see [6])
axiomatizes the substitution core of PAL-RC with finitely or infinitely many
agents over any of the model classes we have discussed. Indeed, it can be shown
using arguments similar to those of §4 that the set of formulas in the language
Lκ
PAL-RC that are valid over legal UPAL models with common extensionality

is exactly the substitution core of PAL-RC. Hence it only remains to prove that
the extended system just described—call it UPAL-RC—is sound and complete
for this model class. Such a proof requires a finite canonical model construction
to deal with common knowledge, and we cannot go into the details here.

Another natural step is to attempt to apply the strategies of this paper to
axiomatize the substitution cores of other dynamics epistemic logics, including
the full system of DEL [4, Ch. 4]. One may imagine a general program of
“uniformizing” dynamic epistemic logics, of which UPAL is only the beginning.
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