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Abstract

This paper explores the connection between fractal geometry and topological modal logic.
In the early 1940’s, Tarski showed that the modal logic S4 can be interpreted in topological
spaces. Since then, many interesting completeness results in the topological semantics have
come to light, and renewed interest in this semantics can be seen in such recent papers as
[1], [2], [3], [4], and [7]. In this paper we introduce the use of fractal techniques for proving
completeness of S4 and non-trivial extensions of S4 for a variety of topological spaces. The
main results of the paper are completeness of S4 for the binary tree with limits (or Wilson
tree), and completeness of S4 for the Koch Curve, a well known fractal curve. An important
corollary is a new and very much simplified proof of completeness of S4 for the real line, R
(originally proved by Tarski and McKinsey in [9]). These results are best seen as examples
of the power of the fractal techniques introduced. The main technique is developed to relate
formally the somewhat peculiar non-Hausdorff tree topologies with more familiar Euclidean
and other metric topologies. As we argue in the paper, the techniques developed here can be
usefully applied to a wide range of completeness problems in the topological semantics.

This paper explores the connection between fractal geometry and topological modal logic. The main
result of the paper is a proof of completeness of the modal logic S4 with respect to the Koch Curve,
a well known fractal curve. An important corollary is a new proof of completeness of S4 for the real
line, R. The latter result was originally obtained by Tarski and McKinsey in [9], and much simplified
and refined by Mints et al. and van Benthem et al.1. Our new proof uses fractal techniques, that,
as we will argue in the last section, are the paper’s main contribution to the topological semantics
for modal logic. Completeness for both the Koch Curve and R are best seen as examples of the
power of the fractal techniques introduced. The results of Section 4 and the techniques above are
not tailor-made for solving completeness of S4 for the real line or for the slightly wider problem of
completeness of S4 with respect to interesting classes of metric topological models. Rather, they
should be seen as tools for obtaining completeness results for a larger variety of languages and with
respect to the full range of Euclidean and other metric topologies. The main technique is developed
to relate formally the somewhat peculiar non-Hausdorff tree topologies with more familiar Euclidean
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and other metric topologies. As we will see, completeness is transferred from an appropriate tree
to a metric space by means of a known fractal curve.

In what follows we use the infinite binary tree with limits, the Wilson tree. We prove that S4 is
complete for the Wilson tree, and leverage this result toward a proof of completeness of S4 for the
Koch curve and the real interval [0, 1]. The Wilson tree is a combination of two formal relatives:
the tree of all finite strings of 0’s and 1’s and the set of all countably infinite strings of 0’s and 1’s.
The Wilson tree is the union of the two. Although this tree has not, to our knowledge, been used
in modal logic, it has come to our attention since the time of writing this paper that the tree was
introduced in category theory by Peter Freyd in the late 1980s. Freyd named the tree ‘Wilson,’
after Bill Wilson.2 We follow this naming convention.

The paper is organized in five sections. Section 1 introduces the basic modal language, the standard
relational modal semantics, and recalls some basic completeness results. Section 2 demonstrates
the use of trees as models for the modal language, and shows that S4 is complete with respect to
the class of models over the infinite binary tree frame. Section 3 explores the topological semantics
for the modal language, introduces the Wilson tree, and shows that the completeness of S4 extends
to this tree. Section 4 is the part of the paper where we prove our main results. It introduces
the Koch Curve, and simultaneously shows completeness of S4 for the Koch Curve and for the
real interval [0, 1]. In Section 5, we conclude by announcing some further applications of fractal
techniques in the topological semantics. A reader familiar with modal logic can skim through much
of Sections 1 and 2. Furthermore, a reader familiar with the topological semantics for modal logic
can leaf through all but the proof of completeness of S4 for the class of models over the Wilson tree
in Section 3. If the reading seems somewhat terse in places, sufficient background information can
be obtained by reading the excellent and very current summary of the state of topological modal
logic in [2]. Many of the results and techniques that are briefly explained in our paper are properly
expounded on there.

1 Modal Language, Trees, and Topology

1.1 Modal Language, Models, and Truth

Let the modal language L consist of a countable set, P = {Pi | for all i ∈ N}, of atomic variables
and be closed under binary connectives →,∨,∧ and unary operators ¬,2,3.

A frame is an ordered pair, F = (U,R), where U is a set of points called the universe, and R is a
binary relation on U . We say F is transitive (reflexive) if R is transitive (reflexive). We interpret
L in a model M = (F , V ), where F is a frame, and V : P→ ℘(U) is a valuation function.

Formulas are interpreted on points x ∈ U and we writeM, x |= φ to mean that in the modelM at
the point x, φ holds. More specifically for a modelM = ((U,R), V ) and a point x ∈ U , the ternary
relation M, x |= φ is interpreted inductively as follows:

2Bill Wilson was the founder of Alcoholics Anonymous. It was Peter Freyd himself during a presentation of our
work at The University of Pennsylvania who recognized the similarity between the tree we were studying, and a tree
that he used in a result some 20 years prior. Curiously, Freyd had also used the tree as an intermediary between the
standard infinite binary tree and the real interval [0, 1], albeit with a somewhat different purpose in mind.

2



For P ∈ P,

M, x |= P ⇔ x ∈ V (P )

M, x |= ¬φ⇔M, x 6|= φ

M, x |= (φ→ ψ)⇔M, x 6|= φ or M, x |= ψ

M, x |= 2φ⇔M, y |= φ for all y such that Rxy

M, x |= 3φ⇔M, y |= φ for some y such that Rxy.

The interpretation for ∨,∧ and ↔ can be obtained from → and ¬ via the standard definitions. We
could have defined 3P as ¬2¬P but the definition was added for the completeness of presenta-
tion.

Definition 1.1 (Logic S4) The modal logic S4 in the language L consists of some complete ax-
iomatization of classical propositional logic PL, some complete axiomatization of the minimal nor-
mal modal logic K, say the axiom:

C : (2P ∧2Q)→ 2(P ∧Q),

and the rules:

RN: ` φ ⇒` 2φ, and

RM: ` φ→ ψ ⇒` 2φ→ 2ψ;3

and, finally, the special S4 axioms:

4 : 2P → 22P

T : 2P → P

We define standard validity relations. Let F = (U,R) be a frame, and let M = (F , V ) be a model
over F . For any formula φ ∈ L , we say φ is true inM ifM, x |= φ for all x ∈ U . We say φ is valid
in F if φ is true in every model over F . If C is a class of frames, we say φ is valid in C if φ is valid
in every frame in C. Finally, the logic S4 is complete for C if every formula valid in C is a theorem
of S4 (i.e., can be derived from the axioms together with the rules of inference). With slight abuse
of notation, we will sometimes say that S4 is complete for for a single frame F , where we mean S4
is complete for {F}.

1.2 Kripke’s classic completeness results

Definition 1.2 (Rooted Frames and Models) A rooted (or pointed) frame is a triple, F =
(U,R, x), where (U,R) is a frame, x ∈ U , and for all y ∈ U , (x, y) ∈ R.

That is, the point x is R-related to every other point in U (or x “sees” all y ∈ U , for short).

3This somewhat unusual axiomatization of K and hence of S4 makes the topological connection introduced later
on in the paper more explicit. C interpreted topologically states that the intersection of opens is open, RN states
that the universe is open, RM states that if P is a subset of Q, then the interior of P is a subset of the interior of Q.
Furthermore, T states that the interior of P is a subset of P, and, finally, 4, together with T, states that the interior
of the interior of P is just the interior of P. This should strongly remind the reader of Kuratowski’s axiomatization
of the interior operator.

3



Theorem 1.3 [Kripke]

The modal logic S4 is sound and complete for (i) the class of all transitive, reflexive frames; (ii) the
class of all finite transitive, reflexive frames; (iii) the class of all rooted, finite, transitive, reflexive
frames.

We will not reproduce this classic result here. Most standard introductory presentations of modal
logic contain proofs of (i), (ii), and (iii). For Kripke’s original proof we refer the reader to [8]; for
a more contemporary variant, see [5].

In the next section we recall that the infinite binary tree, T2, with a transitive, reflexive relation,
R2, can be used to build models for the modal language. Indeed, the logic S4 is complete for the
class of models over the frame T2: a modal formula φ is a theorem of S4 if and only if it is valid
in every model over T2. Below, we show how to view T2 (and, for that matter, any transitive,
reflexive frame) as a topological space. We then introduce an uncountable topological extension
of T2 that we call T+

2 . This new structure extends T2 by adding to it uncountably many “limit
nodes,” corresponding to each (infinite) branch of T2. Our main contribution to the theory of tree
topologies is the proof that S4 is complete for T+

2 . As we mentioned above, the significance of T+
2

for us lies in large part in its use in extending topological completeness results to various metric
and fractal spaces. We start with a brief discussion of T2 viewed as a relational frame.4

2 A modal view of T2

2.1 The infinite binary tree, T2

Let Σ = {0, 1}, and let Σ∗ be the set of all finite strings over Σ including 〈·〉, the empty string.
Let Σo be the set of all countably infinite strings over Σ, and let Σ+ = Σ∗ ∪ Σo. For x, y ∈ Σ∗, let
x ∗ y denote the concatenation of x and y. We will also write xy for x ∗ y. Concatenation is further
defined for x ∈ Σ∗ and y ∈ Σo, but not for x, y ∈ Σo.

Σ∗ is closed under concatenation, that is, if x, y ∈ Σ∗ then x∗y ∈ Σ∗. Similarly, Σ+ is closed under
“right-concatenation” in the following sense: for x ∈ Σ∗, y ∈ Σ+, x ∗ y ∈ Σ+.

We let si : Σ∗ → Σ∗ for i ∈ {0, 1} be the function defined by si(x) = x ∗ i. Thus for example
s0(1) = 10, and s1(110) = 1101. We call s0(x) the “left successor” of x and s1(x) the “right
successor” of x.

Define the binary relation R2 on Σ∗ as the transitive reflexive closure of s0 ∪ s1 (where si is viewed
here as a relation, rather than a function).

Then,

Definition 2.1 (T2, a modal frame) T2 = (Σ∗, R2, 〈·〉)

We call T2 the infinite binary branching tree or full binary tree. We call the empty string, 〈·〉, the
root, and for any x ∈ T2, s0(x) and s1(x) are called the immediate successors of x. For simplicity
of notation, we will often leave out the root, 〈·〉, denoting T2 by (Σ∗, R2).

4The formal details of the next section follow the presentation in [1]. The details can be skipped by a reader
familiar with the notion of tree unravelling.
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Fact 2.2 Every node x is accessible from the root in finitely many steps along R2 and hence in
one step by transitivity. Every x ∈ T2 has exactly two immediate successors and countably many
successors altogether.

A valuation function V : P→ ℘(Σ∗) defines a model T2 over T2. Since T2 is transitive and reflexive
any such model validates the S4 axioms – i.e., S4 is sound for T2.

Claim 2.3 For any finite, transitive, reflexive, rooted, model M, with root x, there is a valuation
V over T2 such that,

M, x |= φ⇔ (T2, V ), 〈·〉 |= φ

for every φ ∈ L.

(The proof of the claim is postponed until the next section.)

It follows from Claim 2.3 and Theorem 1.3 that every nontheorem of S4 can be shown false on
some model based on the frame T2. Indeed, if φ is not a theorem of S4, then by Theorem 1.3, there
is some finite rooted frame F = (U,R, x) and valuation V such that (F , V ), x |= ¬φ. But then by
Claim 2.3, there is a valuation V ′ over T2 such that (T2, V

′), 〈·〉 |= ¬φ. Thus any nontheorem fails
on T2, and S4 is complete for the class of models over T2.

2.2 Building a p−morphism from T2 onto a finite frame F

We prove Claim 2.3 by constructing a p−morphism f : T2 → F , where F = (U,R, x) is a finite,
rooted, transitive and reflexive frame. We briefly recall the notion of p−morphism.

Definition 2.4 (p-morphism) Let F = (U,R, xr) and F ′ = (U ′, R′, x′r) be rooted frames. A
p-morphism from F to F ′ is a function f : U → U ′ satisfying: For any x, y ∈ U and y′ ∈ U ′,

(0) f(xr) = x′r;

(i) If Rxy, then f(x)R′f(y);

(ii) If R′f(x)y′, then there is a z ∈ U,Rxz and f(z) = y′.

We say that f is a surjective p-morphism if, in addition, f(U) = U ′.

Fact 2.5 If there is a surjective p−morphism f from F to F ′, then for any valuation function
V : P→ ℘(U ′), any point x ∈ U , and any modal formula φ, we have:5

(F , [f−1] ◦ V ), x |= φ⇔ (F ′, V ), f(x) |= φ

Thus, to prove Claim 2.3 it suffices to show that for any finite, transitive, reflexive, rooted frame
F = (U,R, x), there is a surjective p−morphism f from T2 to F .

5The function [f−1] : ℘(U ′)→ ℘(U) raises the type: for A ⊆ U ′, [f−1](A) = {y | f(y) ∈ A}. Note that although
f−1 is likely not a function, [f−1] is always a function, but of a higher type. Thus, the function [f−1]◦V : P→ ℘(U),
i.e., it is a valuation function.
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Let the cardinality of U in F be n. Notice that no point in U has more than n distinct successors
and x, the root, actually has n successors. We now construct the function f .

For 1 ≤ i ≤ n(= |U |), we define the set of functions si : U → U (1 ≤ i ≤ n). For each y ∈ U ,
the function si chooses the ith distinct R−successor of y, if such a successor exists. Otherwise
si(y) = y. More formally,

Definition 2.6 (Successor functions si) For all y, s1(y) = y (s1 is the identity function). Fix
i ∈ N, and suppose that s1(y), s2(y), ..., si−1(y) are already defined, and that Rysk(y) for all k < i.
Then we let si(y) be some z ∈ U such that Ryz and sk(y) 6= z for all k < i, if there is some such
z. Else, si(y) = y.

Example 2.7 (A set of successor functions) Let y ∈ U have 3 distinct successors including y
itself: y, w and z and no others. Then if |U | = 5, we let s1(y) = y, s2(y) = w, s3(y) = z, but
s4(y) = s5(y) = y as we have run out of distinct successors.

Definition 2.8 [Unraveling p−morphism]

We define a linear ordering on the nodes in T2. This can be done in many ways, but for specificity,
we let, e.g., 〈·〉 < 0 < 1 < 00 < 01 < 10 < 11 < 000 < ...

[ base step.] First let f(〈·〉) = x.

[ recursive step.] Until f is defined for all nodes in T2, find the least6 node t such that f(t) is
defined, but neither f(t ∗ 0) nor f(t ∗ 1) is defined. Assume that f(t) = y. Then let,

f(t ∗ 1) = s1(y), f(t ∗ 01) = s2(y), f(t ∗ 001) = s3(y), ... f(t ∗ 0n−1 ∗ 1) = sn(y)

where 0n−1 is a sequence of n− 1 zeros. Finally, let,

f(t ∗ 0) = f(t ∗ 00) = f(t ∗ 000) = ... = f(t ∗ 0n) = s1(y) = y.

Lemma 2.9 [Unravelling Lemma] Let f be the function defined in Definition 2.8. Then f is a
p−morphism.

Proof. (i) It suffices to show that if R2st and t is the immediate successor of s, then Rf(s)f(t).
This can be seen by inspecting the recursive step of Definition 2.8. If f(s) = y, then f(t) is
si(y), for some i ∈ {1, ..., n}, but, by definition of si, we know Rysi(y) for each such i. (ii) We
need to show that if Rf(t)z, then there exists s ∈ T2 such that R2ts, and f(s) = z. We let
f(t) = y and recall that s1(y), s2(y), ..., sn(y) exhaust the distinct R−successors of y in F . Then
for some i ∈ {1, ..., n}, si(y) = z. If t was ever the least node satisfying the antecedent condition of
Definition 2.8, then some successor of t was labeled by si(y) – i.e., by z. Otherwise, t is a successor
of some other node t′, which did at some stage satisfy the antecedent condition of Definition 2.8
and t = t′ ∗ 0k for some k ≤ n. But then, at that stage, for some successor t′′ of t, f(t′′) = y and
t′′ ∗ u was undefined for any nonempty finite sequence u. Thus at some future stage a successor of
t′′ was labeled with si(y) (i.e. z). But a successor of t′′ is a successor of t by transitivity of R2, as
desired.

Putting Fact 2.5 and Lemma 2.9 together, we obtain the desired completeness result:

6On the ordering just given.
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Figure 1: The recursive step of the definition of the p−morphism f . Here |U | = 5, f(t) = y,
s1(y) = y, s2(y) = y1, s3(y) = y2, s4(y) = y3, and s5(y) = y4. Following the definition,
f(t ∗ 01) = y1, f(t ∗ 001) = y2, f(t ∗ 0001) = y3, f(t ∗ 00001) = y4, and all other points visible in
the diagram are labeled y. No successor of t except for the eleven nodes (really ten and t) explicitly
shown in the diagram is labeled at this stage.

Fact 2.10 The modal logic S4 is complete for the class of models over the frame T2 = (Σ∗, R2, 〈·〉).

In the next section we look at modal language L and the frame T2 = (Σ∗, R2) from a topological
perspective.

3 Topological Semantics for Modal Logic

We now turn to topology and the topological interpretation of the modal language L. Long before
Kripke-semantics for the modal language was established as the yardstick, A. Tarski and J.C.C.
McKinsey noted an irresistible connection between Lewis and Langford’s axioms for the modal logic
S4, and Kuratowski’s axioms for the topological interior operator. The topological interpretation
of modal logic exploits this connection .7

Tarski’s idea was to view 2A as the interior of the set A and 3A as the closure of A and try to
understand what kind of logical structure such an interpretation supported. Tarski was able to
prove – in some sense quite unsurprisingly – that under this interpretation the logic of the interior
and closure operators turns out to be nothing less than S4. The argument for the general case is
straightforward, as we’ll see below. The arguments for specific topological spaces turn out to be
rather more involved. It is part of our goal here to try to understand where such complexity comes
from. Let us introduce some basic background notions.

7Equivalently, one can go by the connection between the 3-version of the S4 axioms and the behavior of the
closure operator C, via the definition I(A) = −C(−A). (The interior of a set is just the complement of the closure
of the complement).
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3.1 Topological semantics for modal language L and the connection with
Kripke frames

A topology is a set of points with some spatial structure (one can think of it as a set of points glued
together in a certain way). Specifically, a topology is a pair, X = (X,J ), where X is a set and
J ⊆ ℘(X) satisfies,

1. X, ∅ ∈ J ,

2. If A,B ∈ J , then A ∩B ∈ J ,

3. If Ai ∈ J for all i ∈ I, then
⋃

i∈I Ai ∈ J .

If in addition a topology satisfies,

4. If Ai ∈ J for all i ∈ I, then
⋂

i∈I Ai ∈ J

then the topology is called Alexandroff. As we’ll see, most interesting topologies are not Alexandroff.
More (structure) is not always better as a cursory comparison between Italian and American pizza
quickly reveals.

Although a topological space is strictly speaking a pair, (X,J ), we will for simplicity of notation
(and where the meaning is clear) often denote both the topological space itself and the underlying
set of points by X. The sets in J are called open sets. We say a set is closed if its complement is
open. The union of open subsets of a set, A, is called the interior of A:

Int(A) =
⋃
{O open |O ⊆ A}

The closure of a set is the complement of the interior of the complement:

Cl(A) = −Int− (A)

(Equivalently, a point x is in the closure of A if every open set containing x contains some element
in A.)

We wish to interpret our language L in topological models. A topological model T is a pair (X , V )
where X = (X,J ) is a topology and V : P → ℘(X) is a valuation function. We define a ternary
relation T , x |= φ that as before holds between a point in a model and a formula. The cases for
the atomic and Boolean formulae are the same. The only real difference is in the modal cases of 2
and 3. We want 2φ to be true at a given point x if x is in the interior of the set defined by the
formula φ. Then also 3φ should hold at x if x is in the closure of the set defined by φ . We encode
these observations in the following truth definitions:

T , x |= 2φ⇔ ∃O ∈ J such thatx ∈ O and∀y ∈ O, T , y |= φ.

T , x |= 3φ⇔ ∀O ∈ J , x ∈ O implies∃y ∈ O such that T , y |= φ.

Let X = (X,J ) be Alexandroff and let x ∈ X. Consider the set Ox =
⋂
{O ∈ J |x ∈ O}, i.e., the

intersection of all open sets containing x. Note that since our topological space is Alexandroff, this
is a non-empty open set. We define the binary relation R on X:

Rxy ⇔ y ∈ Ox.
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Then

Claim 3.1 FX = (X,R) is a reflexive, transitive frame.

Proof. For reflexivity, note that x ∈ Ox. For transitivity, suppose Rxy and Ryz. Then y ∈ Ox and
z ∈ Oy. From the first inclusion it follows that Oy ⊆ Ox. So we have z ∈ Oy ⊆ Ox, and hence
Rxz.

Moving in the reverse direction, we can generate a topology from a reflexive, transitive frame. Let
F = (X,R) be a reflexive, transitive frame. Let JF be the collection of subsets of X that are
upward-closed under R (where a set O ⊆ X is upward-closed under R if x ∈ O and Rxy implies
y ∈ O). Then,

Claim 3.2 XF = (X,JF ) is Alexandroff.

Proof. The reader can verify that XF is a topological space. To see that it is Alexandroff, suppose
that {Oi | i ∈ I} is a collection of open sets in the topology and let x ∈

⋂
i∈I Oi and Rxy. Then

since each Oi is upward-closed under R, y ∈ Oi for each i ∈ I. But then y ∈
⋂

i∈I Oi, and
⋂

i∈I Oi

is upward-closed under R, as desired.

The reader is invited to verify that the operations of generating a transitive, reflexive frame from
an Alexandroff topology, and of generating an Alexandroff topology from a transitive, reflexive
frame just described are inverses of one another: if one starts with an Alexandroff topology, then
generates a transitive reflexive frame, and then, from this frame, generates an Alexandroff topology
in the manner described, one ends up with the original topological space (and similarly, when one
starts from a transitive, reflexive frame). When a frame and topological space are generated in this
way by one another, we will sometimes say they “correspond.” The next proposition states that
corresponding frames and topological spaces satisfy the same modal formulas:

Proposition 3.3 Let X = (X,J ) be an Alexandroff topology and let F = (X,R) be a transitive,
reflexive frame. If X and F correspond, then for any formula φ ∈ L, any x ∈ X, and any valuation
V : P→ ℘(X)

(F , V ), x |= φ⇔ (X , V ), x |= φ

Proof. The proof is by induction on the complexity of φ. We show only the modal clause, φ :≡ 2ψ.
We have,

(F , V ), x |= 2ψ ⇔ (F, V ), y |= ψ for all y such that Rxy

⇔ (F , V ), y |= ψ for all y ∈ Ox

⇔ (X , V ), y |= ψ for all y ∈ Ox (by Induction Hypothesis)

⇔ (X , V ), x |= 2ψ

What these observations tell us is that Alexandroff topologies are nothing more than reflexive,
transitive frames. This is both useful and limiting. On the positive side, it allows us to transfer
a variety of important results directly to the topological semantics. On the negative side, most
interesting topologies are non-Alexandroff (e.g. metric spaces). Much of our work in what follows
will be constructing “nice” maps between metric spaces and non-Alexandroff topologies.
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3.2 Interior maps and truth preservation in topological semantics

The work in the sections below requires us to recall some additional topological notions. In the
topological semantics, the notion of an interior map plays the role of p−morphism in the Kripke
(or frame) semantics. In fact, when the topologies in question are Alexandroff, the notions of
p−morphism and interior map correspond exactly.

Let X = (X,JX) and Y = (Y,JY ) be topological spaces.

Definition 3.4 (Open Map) A map g : X → Y is open if for every set O ∈ Jx, g(O) ∈ Jy.

Definition 3.5 (Continuous Map) A map g : X → Y is continuous if for any set U ∈ Jy,
g−1(U) ∈ Jx.

Definition 3.6 (Interior Map) A map g : X → Y is interior if it is both open and continuous.

Definition 3.7 (Full-Interior Map) We will say a map g : X → Y is full-interior if it is interior
and surjective.

Fact 3.8 (Full-Interior Maps Preserve Modal Formulas) Let g : X → Y be a full-interior
map, and φ any formula of the basic modal language L. Let V ′ : P→ ℘(Y ) be a valuation function
and let V = ([g−1] ◦ V ′).8 Then, for any x ∈ X,

(X , V ), x |= φ⇔ (Y, V ′), g(x) |= φ

Proof. The proof is by induction on the complexity of φ. The base case and the Boolean cases are
straightforward. For the modal case:

(X , V ), x |= 2ψ ⇔ (Y, V ′), g(x) |= 2ψ

we use the preservation of open sets along g to show the left-to-right direction, and we use the
continuity of g to show the right-to-left direction. The details of the proof can be found in, e.g.,
[1].

Now suppose that X = (X,JX) and Y = (Y,JY ) are Alexandroff topologies, and let FX and FY
be the corresponding frames. Moreover, let g : X → Y be a full-interior map. Then,

Fact 3.9 The function g reinterpreted as g : FX → FY is a p−morphism.

Proof. See e.g., [1].

Just as p−morphisms play an important role in transferring completeness results in the relational
semantics, interior maps play a similar role in transferring completeness results in the topological
semantics. In the remainder of this section, we recall some of the better known topological com-
pleteness results for S4. We then use a particular sequence of interior maps to prove completeness
for the Koch fractal and the real interval [0, 1].

8Thus V is a valuation function on X, defined as the composition of g−1 with V ′.
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3.3 Topological completeness results for S4

Theorem 3.10 The logic S4 is sound and complete with respect to

(i) the class of all topologies (McKinsey & Tarski);

(ii) the class of all finite topologies (Kripke);

(iii) any dense-in-itself metric space (including, e.g., Rn, for any n ∈ N) (McKinsey &Tarski);

(iv) the infinite binary tree, T2 (see below) (van Benthem, Gabbay).

In this paper we will show,

(v) a direct construction for the singleton class K, the Koch Curve. The Minkowski–Bouligand
dimension of K is 1.26. (This paper or McKinsey &Tarski).9

(vi) the Willson Tree or Infinite Binary Tree with Limits, T+
2 , equipped with the topology generated

by finite initial segments [see Definition 3.11]. (This paper)

Proof. (ii) follows from completeness for finite frames; (iii) is proved in [9]; (i) follows from either
(ii) or (iii); (iv) follows from Lemma 2.9, originally due to van Benthem and Gabbay.10 For (v)
and (vi), see the later sections of this paper.

Part of our goal in this paper is to revisit (iii) – in particular, the special case of R – as well as
to extend the topo-completeness results to the Koch Snowflake fractal. We will also mention some
other fractals that are useful in topo-modal constructions and for which completeness results can
be had. We have in mind, in particular, a direct proof of completeness of S4 for R2 and R3 via the
Sierpinski Carpet and Menger Sponge, respectively.

3.4 A topological perspective on T2, and the extension to the limit tree
topology T+

2

The infinite binary tree, T2, is a rare object in mathematics that exhibits interesting structural
features from a great range of different perspectives. As we saw above, it has enough structural
symmetry and flexibility to carry the weight of the completeness theorem of S4 in the relational
semantics. T2 recurs when we start thinking of space fractally. We look next at an extension of T2
called the Wilson tree, or infinite binary tree with limits, that allows us to prove two completeness
results in the topological semantics.

3.4.1 Wilson Tree (Infinite Binary tree with Limits), T+
2

Definition 3.11 Take alphabet Σ = {0, 1} and construct the set Σ∗(Σ+) of all finite (countable)
strings over Σ. For any s ∈ Σ∗, let Bs = {s∗ t | t ∈ Σ+}, i.e. the set of all (possibly infinite) strings

9Since the standard topological dimension of K is 1, there is a homeomorphism h between K and [0, 1]. Thus,
we know that S4 is complete for K as we can transfer counterexamples via h. However, this is the first direct
completeness construction on a fractal curve of non-integer Minkowski–Bouligand dimension, except for Cantor Set.

10Both Johan van Benthem and Dov Gabby introduced a variant of the unravelling technique, but the historical
precedence, as far as we know, is unclear.
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with initial segment s (where s is allowed to be the empty string). Let B = {Bs | s ∈ Σ∗}. Note that
B is closed under finite intersections (For any s, t ∈ Σ∗ either Bs ⊆ Bt, Bt ⊆ Bs, or Bs ∩Bt = ∅),
hence is a basis for some topology J + over Σ+. Finally, let T+

2 = (Σ+,J +).

Fact 3.12 (i) Σ+, the underlying set of T+
2 , is uncountable;

(ii) T+
2 is first countable;

(iii) T+
2 is non-Alexandroff.

Separation axioms:

(iv) T+
2 is T0,

(v) T+
2 is not T1 (hence non-Hausdorff and non-metrizable)

(i) follows from an injection between the set of countably infinite strings over Σ and the real interval
[0, 1]; (ii) follows from the fact that the basis, B, is countable; (iii) the intersection of basic opens
B0, B00, B000, ... (i.e. the countable sequence 000...) is not open; (iv) For s, t ∈ Σ+, s 6= t: if s is
a descendant of t, then either Bs separates s and t (if s ∈ Σ∗) or there exists t′ ∈ Σ∗ which is a
descendant of t such that Bt′ separates s and t (and vice versa, if t is a descendant of s). If neither
s nor t is a descendant of the other, there exists t′ ∈ Σ∗ such that t′ is an ancestor of s but not of t,
and Bt′ separates s and t; (v) take, for instance, s = 0 and t = 00: there is no open set containing
s that does not contain t.

In the remainder of this section, we show that S4 is complete for T+
2 . To this end, recall the map

f : T2 → F = (U,R, x) given in Definition 2.8. We view this function now as a map, f : Σ∗ → U ,
between underlying sets, and extend it to a map, f+ : Σ+ → U . Moreover, we now view the
frames F and T+

2 as topological spaces, and the map f+ as a topological map. We show that f+ is
full-interior. Since S4 is complete for (the class of models over) finite, transitive, reflexive frames,
it follows from Fact 3.8 that S4 is also complete for (the class of models over) T+

2 .

We will need a few simple infinitary notions. We begin by defining an infinite branch b of the tree
T2.

Definition 3.13 (Countable Branch) Let b =< t0, t1, ... > be an infinite branch of T2. That is:

(i) t0 = 〈·〉;

(ii) For all n = 0, 1, 2..., either tn+1 = tn ∗ 0 or tn+1 = tn ∗ 1.

Lemma 3.14 [Cycling Lemma]

Let f be any function from T2 onto F = (U,R, x), and let b =< t0, t1, ... > be an infinite branch in
T2. Then there exists N ∈ N such that for all worlds x ∈ U ,

∃m > N such that f(tm) = x implies f(tm) = x for infinitely many m > N.

Proof. The lemma follows from the fact that U is finite, so there are only finitely many labels in U
for f to “choose” from. Labels that occur only finitely many times on a branch, occur for the last
time at some finite node of T2.

For a given branch b, let nb be the least such N ∈ N. Let Ab = {f(tm) : m > nb}. (Thus Ab is the
collection of worlds in U that label infinitely many nodes of the branch, b, under f).

12



Note that the Lemma states that after some initial segment of b all nodes of b are sent by f to
elements in Ab and each of these elements labels infinitely many nodes on the branch.

Fact 3.15 For any n ∈ N and any x ∈ Ab, ∃m > n such that f(tm) = x.

Proof. This follows from the fact that every element in Ab labels infinitely many nodes in b.

Definition 3.16 [Branch Labeling]

Let f be a p−morphism from T2 onto the finite rooted frame F = (U,R, x). For every branch b
in T2, we let the finite choice function C(b) return a choice of y ∈ Ab. Further, noting that every
branch b has a unique countable sequence in Σ∗ associated with it, we can think of the branches and
elements of Σ+ interchangeably. We define the extension, f+ : Σ+ → U , of f as follows: Let tb
be the element in Σ+ that corresponds to the branch b. We let f+(tb) = C(b). Thus we label each
countable string in Σ+ with a node in Ab ⊆ U .

For the remainder of this paper we view f+ and f interchangeably as a maps between topological
spaces, frames, or simply underlying sets. From the context it should be clear which of these we
intend. Also, we refer to ‘finite’ and ‘limit’ nodes of the tree T+

2 , with the obvious interpreta-
tion.

Theorem 3.17 f+ : T+
2 → F is full-interior.

Proof. We need to show that f+ is open, continuous, and surjective.

Open. Let O ∈ J + be a basic open set. Then O = Bs for some finite node s. Let y = f+(s) and
let Dy = {z ∈ U |Ryz}. We show that f+(Bs) = Dy. We know that every point in Dy labels some
node in Bs by the fact that f is a p-morphism. Thus Dy ⊆ f+(B). For the reverse inclusion, let
z ∈ f+(Bs). Then z = f+(t) for some t ∈ Bs. If t is finite then f+(t) = f(t) ∈ Dy, where inclusion
follows from the fact that f is a p-morphism. If t is a limit node, then f+(t) = f+(t′) for some
finite node t′ ∈ Bs (by construction of f+). Moreover, f+(t′) = f(t′) ∈ Dy (since t′ is finite). Thus
f+(B) ⊆ Dy, as needed.

Continuous. Let U be an open set in F . Let s ∈ (f+)−1(U), and let f+(s) = y ∈ U . We need
to show there is an open set O ⊆ T+

2 , such that s ∈ O ⊆ (f+)−1(U). Now if s is finite, then we
already know that f+(Bs) = Dy ⊆ U (by proof of Open above). So s ∈ Bs ⊆ (f+)−1(U), where
Bs is open. If s is a limit node, then there is some finite s′ such that f+(s′) = y, and Rs′s. But
then f+(Bs′) = Dy ⊆ U and s ∈ Bs′ ⊆ (f+)−1(U), where Bs′ is open. This shows that (f+)−1(U)
is open, as needed.

Surjective. Surjectivity follows from the fact that x ∈ Range(f+) and f+ is open (where x is the
root of F).

Theorem 3.18 S4 is complete for T+
2 .

Proof. By Fact 3.8, Theorem 3.10, and Theorem 3.17.

In the next section, we construct a full-interior function from the real interval [0, 1] onto T+
2 , via

the Koch Curve. That construction gives us both completeness of S4 for the Koch Curve, and a
new proof of completeness of S4 for the real interval [0, 1].
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Figure 3: K2: The length of each line segment is 1
9 , and the five triangles with apex’s at

y0, y2, x, z2, z0 are equilateral triangles
.

4 Koch Curve and Topological Completeness

Our goal is to construct a homeomorphism between the interval [0, 1] and Koch Curve fractal,
K, and a relatively simple full interior labelling l : [0, 1] → T+

2 inspired by the construction of
Koch Curve. The labeling itself provides a straightforward proof of completeness of S4 for the real
interval. When composed with the homeomorphism we obtain completeness of S4 for the singleton
class K, the Koch Curve.

4.1 Koch Curve

Recall the construction of the Koch curve, K. We begin with the unit interval [0, 1]. At the first
stage, K1, we let the middle third of the interval be “pushed up” to form two sides of an equilateral
triangle with side length 1

3 as pictured in Figure 2.

At the second stage we let the middle third of each line segment of K1 be raised to form two sides
of an equilateral triangle of length 1

9 . This gives K2 in Figure 3.

In general, at stage n of construction, we raise the middle third of each line segment of Kn−1 to form
two sides of an equilateral triangle of side length equal to the length of the segment raised.

The Koch curve is a limit of the construction stages in the following sense. Let K0 be the unit
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x1

gn(x2)

x0 x3 x4

a

x2

b

gn(y) = ygn(y) = y

Figure 4: This figure shows how gn acts on a single segment [x0, x4] of Kn−1. gn is the identity
function everywhere except: (i) gn(x2) is the apex of the triangle, and (ii) gn maps the line segment
(x1, x2) linearly onto a and maps the line segment (x2, x3) linearly onto b.

interval [0, 1]. For n = 1, 2..., let
gn : Kn−1 → Kn

be the obvious homeomorphism from Kn−1 to Kn.

Let
fn = gn ◦ gn−1... ◦ g1

Thus, for each n ∈ N, fn : [0, 1] → Kn is a homeomorphism from [0, 1] onto Kn. Finally, we let f
be the pointwise limit of these functions:

f = lim
n→∞

fn

and the Koch curve, K, is the range of this limit:

K = Range(f)

Claim 4.1 f : [0, 1]→ K is a homeomorphism.

Proof. We need to show that f is bijective, continuous and open.

1. (Bijective) Note that any two distinct points x, y ∈ [0, 1] eventually end up on different line
segments under some fn. Indeed, since x 6= y, we know d (x, y) > 0 (where d denotes the
usual distance function). But the length of line segments in Kn is ( 1

3 )n. Since ( 1
3 )n → 0,

the length of line segments in Kn is eventually smaller than the distance d(x, y), and x and
y belong to different line segments. We leave it to the reader to verify that such points are
not identified under f – i.e., f(x) 6= f(y). This shows that f is injective. Surjectivity follows
from the fact that K = Range(f).

2. (Continuous) We show that f is the uniform limit of continuous functions, hence continuous.11

Note that for any x ∈ [0, 1], d (fn(x), fn−1(x)) = d (gn(fn−1(x)), fn−1(x)), where d denotes
the distance function in the usual metric on R2. Moreover, by construction of gn, gn moves

points at most a distance of ( 1
3 )n(

√
3
2 ). So d (fn(x), fn−1(x)) < ( 1

3 )n(
√
3
2 )→ 0, for all x ∈ [0, 1].

Thus the fn’s converge uniformly, and the uniform limit of continuous functions is continuous.

11Here we view the functions fn as functions from the space [0,1] to R2, with the usual metrics on each of these
spaces.
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Figure 5: Segment s in Kn−1 is [x, y]. Then A(s) = [x, x1], B(s) = (x1, x2), C(s) = (x2, x3), D(s) =
[x3, y], and E(s) = {x2}.

3. (Open) We first show that the image under f of a closed set is closed. Indeed, if A ⊆ [0, 1] is
closed, then it is also compact (since [0,1] is bounded). But the continuous image of a compact
set is compact, so f(A) is a compact subset of K. So f(A) is closed (and bounded), as desired.
Now suppose that O ⊆ [0, 1] is open. Then f(O) = f([0, 1])−f([0, 1]−O) = K−f([0, 1]−O),
since f : [0, 1]→ K is a bijection. By the above argument, f([0, 1]− O) is closed, so f(O) is
open.

It follows from the previous claim that f−1 : K → [0, 1] is a homeomorphism. We now wish
to construct a function l : [0, 1] → T+

2 that is full-interior. Once we have done so, l alone will
prove completeness of S4 for the real interval [0, 1], and the composition l ◦ f−1 : K → T+

2 will
prove completeness of S4 for the Koch curve, K. Much as we constructed f as a limit of finite
approximations, fn, we now construct the function l as a limit of stagewise labeling functions, ln.
Indeed, as the reader will presently see, the functions, ln, correspond neatly to stages of Koch
construction.

Note above that each gn : Kn−1 → Kn sends Kn−1 to Kn by breaking up each line segment of
Kn−1 into four line segments of Kn. For any line segment s in Kn−1 we refer to its “successor”
segments in Kn as (in order from left to right) A(s), B(s), C(s) and D(s) (see Figure 5). There is
an ambiguity here with respect to endpoints: is the point 1

3 , for example, in the segment A([0, 1]) or
B([0, 1])? For reasons that will become clear below, we decide that B(s) and C(s) are always open
on both ends, while the “right” end-point of A(s) and the “left” endpoint of D(s) are always closed.
(The left endpoint of A(s) and the right endpoint of D(s) are either open or closed, depending on
whether the segment s itself is open or closed at that endpoint). Thus, e.g. 1

3 ∈ A([0, 1]) and
2
3 ∈ D([0, 1]). Note that for each segment s this leaves one point still unclassified – namely, the
midpoint of s which becomes in the next stage of construction, the apex of the equilateral triangle
(in Figure 5, the point x2). For simplicity, we let this one point constitute a new singleton set
E(s).

These definitions allow us to construct stages of labeling in a natural way. Fix x ∈ [0, 1], n ∈ N and
let sx,n−1 be the line segment in Kn−1 containing fn−1(x). We let:

ln(x) =

 ln−1(x) ∗ 0 if fn(x) ∈ B(sx,n−1)
ln−1(x) ∗ 1 if fn(x) ∈ C(sx,n−1)
ln−1(x) otherwise
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Stages of labeling correspond to stages of Koch construction. If in the n-th stage of Koch construc-
tion x “stays in the same place” (i.e., fn(x) = fn−1(x)), then the label for x at stage n remains
what it was in the previous stage (i.e., ln(x) = ln−1(x)). If on the other hand x gets “pushed up”
to a side of an equilateral triangle introduced at stage n, then the new label ln(x) appends a 0
or 1 to the old label ln−1(x) (depending on which side of the equilateral triangle – i.e., “left” or
“right”.)

Note that some elements in [0, 1] “stabilize” over successive labelings and some do not. More
precisely, some but not all points x ∈ [0, 1] satisfy the following condition:

(∗)∃N ∈ N such that ∀n ≥ N, ln(x) = lN (x)

If every point in the interval stabilized, we could happily restrict our attention to the infinite binary
tree T2 (without limits) and use this tree to label points in the real interval [0, 1]. The fact that
many – in fact uncountably many – points do not stabilize is our motivation for passing from
T2 to T+

2 . Our final labeling function, l, agrees with stage-wise labeling functions on points that
stabilize, but assigns limit nodes of T+

2 to all points that do not stabilize. We define the function
l : [0, 1]→ T+

2 as follows:

l(x) =

{
lN (x) if x satisfies (∗)
t otherwise

where t is the unique countable sequence over {0, 1} that has ln(x) as initial segment for each
n ∈ N.

To take a simple example, it is clear that the point 1
3 stabilizes and therefore l( 1

3 ) is a finite string.
Indeed, l( 1

3 ) = 〈·〉, as ln( 1
3 ) = l0( 1

3 ) = 〈·〉 for all n ∈ N. Note that successive labeling functions, ln,
are monotonic in the following sense: For any x ∈ [0, 1], if m < n, then ln(x) is an descendant of
ln(x) (i.e., ln(x) = lm(x) ∗ t for some t ∈ Σ+). Moreover, l(x) is a descendant of ln(x) for all n ∈ N
(i.e., l(x) = ln(x) ∗ tn for some tn ∈ Σ+).

Theorem 4.2 l : [0, 1]→ T+
2 is a full, interior map

The proof of this theorem is given in the section below. We state as corollaries the two main results
of this paper:

Corollary 4.3 S4 is complete for the class of models over the real interval [0, 1].

Proof. Immediate from Fact 3.8, Theorem 3.18, and Theorem 4.2.

Corollary 4.4 S4 is complete for the class of models over Koch curve, K.

Proof. By the map l◦f−1 : K → T+
2 . That the composition is full-interior is immediate from Claim

4.1 and Corollary 4.3.

4.2 l is a Full Interior Map

In this section, we prove Theorem 4.2.
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Proof.

As before, for any finite node s ∈ T+
2 , let Bs be the basic open set {s ∗ t | t ∈ Σ+}.

1. (Continuous) Let U be a basic open set in T+
2 . Then U = Bs for some finite node s ∈ T+

2 .
Suppose x ∈ l−1(Bs). We show there is an open set O ⊆ [0, 1] such that x ∈ O ⊆ l−1(Bs). By
construction of the functions ln, there exists a least N ∈ N such that lN (x) = s. Moreover, at
stage N all points belonging to some open interval O which contains x are labeled by s – i.e.,
for each y ∈ O, lN (y) = s. By monotonicity of the labeling functions, l(y) is a descendant of
lN (y)(= s) for each y ∈ O. So O ⊆ l−1(Bs). Moreover, x ∈ O and O is open, as needed.

2. (Open) We introduce the notion of a maximal, uniformly labeled (MUL) interval under ln.
In particular, I ⊆ [0, 1] is a MUL interval under ln if for all x, y ∈ I, ln(x) = ln(y), and
there does not exist a strictly bigger interval I ′ ⊃ I with this property. With slight abuse of
notation, where I is a MUL interval under ln, all of whose points are labeled by some node t,
we will write ln(I) = t. Note that for each point x ∈ [0, 1], x belongs to successively smaller
MUL intervals under the finite labeling functions, l1, l2, l3, . . . . (Thus, e.g., for x = 1/4, x
belongs to the MUL interval [0, 13 ] under l1, then to the MUL interval [ 29 ,

1
3 ] under l2, etc.)

Letting Ix,n be the MUL interval under ln containing x, we have that length (Ix,n)→n→∞ 0.
It follows that if O ⊆ [0, 1] is open, and x ∈ O, then for large enough n, Ix,n ⊆ O.

Now let O ⊆ [0, 1] be open, and suppose s ∈ l(O) – that is, l(x) = s for some x ∈ O. We need
to show that there exists an open set U ⊆ T+

2 such that s ∈ U ⊆ l(O).

If (case 1) s is finite, then for large enough n, Ix,n ⊆ O and ln(Ix,n) = s. We claim that
l(Ix,n) = Bs. Since Ix,n ⊆ O, we have s ∈ Bs ⊆ l(O), and Bs is open, as needed. (Proof of the
claim: By monotonicity of the labeling functions, we know that l(Ix,n) ⊆ Bs. The difficult
part is to show that Bs ⊆ l(Ix,n) – in particular, that every limit node in Bs labels some
point in Ix,n under l. We prove this part, and leave the case for finite nodes to the reader.
Let r be a limit node in Bs. Then r = s ∗ r′ for some countably infinite string r′ ∈ Σ+. We
write r′ = (r′1, r

′
2, r
′
3, . . . ). We need to find x′ ∈ Ix,n such that l(x′) = r. It will be useful

for us to label different segments of an MUL interval, I, by A(I), B(I), C(I), and D(I), just
as we labeled different parts of the line segments in Kn above.12 We now define a sequence
of points xn ∈ [0, 1], recursively. For the base step: If r′1 = 0, then let x1 be some point in
B(Ix,n); if r′1 = 1, then let x1 be some point in C(Ix,n). For the recursive step, assume we
have defined the points x1, . . . , xk. Then if r′k+1 = 0, let xk+1 be some point in B(Ixk,n+k);
if r′k+1 = 1, then let xk+1 be some point in C(Ixk,n+k). By construction, for each k ∈ N, we
have xk+1, xk ∈ Ixk,n+k. So |xk+1−xk| ≤ length (Ixk,n+k)→k→∞ 0. Thus the sequence {xk}
is Cauchy, hence convergent. We let x′ = limk→∞ xk. It is then clear by construction that
x′ ∈ Ix,n and l(x′) = s ∗ r′ = r, as needed.)

If (case 2) s is a limit node, then ln(Ix,n) is a finite ancestor of s, for each n ∈ N. We
pick n large enough so that Ix,n ⊆ O and let t = ln(Ix,n). Then, as in the previous case,

12Thus, if I = (i1, i2), we have:

B(I) = (i1 + 1
3

(i2 − i1), i1 + i2−i1
2

)

C(I) = (i1 + i2−i1
2

, i2 − 1
3

(i2 − i1))
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l(Ix,n) = Bt. Moreover, s ∈ Bt by monotonicity of the labeling functions. Since Ix,n ⊆ O, we
have s ∈ Bt ⊆ l(O), and Bt is open, as needed.

3. (Surjective) We know already that for some x ∈ [0, 1], l(x) = 〈·〉, which is the root of T+
2

(pick, e.g., x = 1
3 ). Moreover, the entire interval [0, 1] is open. So by the fact that l is open,

l[0, 1] is open, and contains the root of T+
2 . Since every node in T+

2 is a descendant of the
root, it follows that l is surjective.

This completes the proof of the theorem.

5 Conclusions and further directions

The results just proved show that fractal techniques can be usefully and relatively smoothly applied
to problems in the topological semantics for the standard modal logic S4. In conclusion, we wish
to suggest that the usefulness of fractal techniques is much more general. It extends to related
intensional languages as long as they (i) have a topological interpretation in one of the standard
metric topologies, and (ii) do not exceed a certain level of expressive power. As we argued in
the introduction, the results of Section 4 and the techniques above are not tailor-made for proving
completeness of S4 for the real line. Rather, these techniques should be seen as a recipe for obtaining
completeness results for a larger variety of languages and with respect to the full range of Euclidean
and other metric topologies.

The main technique is developed to relate formally the somewhat peculiar tree topologies (non-
Hausdorff) with more familiar metric spaces. One simply finds a suitable tree for which the desired
completeness result is easily proved, and then constructs fractal-based maps from the topology in
question to the tree. For instance, for the proof of completeness of S4 for the rationals, this tree is
the infinite binary tree, T2; for completeness for the reals, as we have demonstrated above, the tree
is T+

2 (the Wilson tree). Once the right tree is found, and completeness has been shown for the
tree, one finds an appropriate fractal which facilitates topological completeness transfer from the
tree to the desired metric space. In the case of S4 for the reals, the needed fractal was the Koch
Curve. In the case of modal topological products logics over rationals, the appropriate fractal is
known as Vicsek fractal.13

Topological concepts have a plethora of important applied uses: from issues related to our under-
standing of space and time, to dynamical systems. In logic, in our view, we ought to have a ready
set of tools for exploring the logic of topological spaces, their inner structure, and the strength of
languages needed to express them. The fractal techniques introduced here are a small step in the
direction of accumulating such tools.

Several lines of inquiry extend the results and techniques of this paper. Our paper tentatively titled
“Sierpinski Carpet, Menger Sponge, and Fractal Techniques in Topological Modal Logic” proves
completeness of S4 for the plane R2 and the cube R3. These proofs are both direct: they do not
rely on completeness for the real line. For this reason, the proofs provide a deeper understanding
of the plane, the cube, and their topological and logical structure. We are also currently working
on understanding the general case, Rn, and the countably infinite case, R∞.

13We have used this fractal in the main proof of [3]. In fact, the discovery that the main result there relied on a
fractal technique is what led to this line of research.
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